Cho x+y+z=0 và x,y,z khác 0. Rút gọn:
a) A= \(\frac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
b) B= \(\frac{\left(x^2+y^2-z^2\right)\left(y^2+z^2-x^2\right)\left(z^2+x^2-y^2\right)}{16xyz}\)
Cho x,y,z > 0 thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2017\)
Tìm GTNN của \(A=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Cho x,y,x là các sô thực dương. CMR \(\dfrac{2\sqrt{x}}{x^3+y^2}+\dfrac{2\sqrt{y}}{y^3+z^2}+\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
giải hệ phương trình sau
\(\left\{{}\begin{matrix}x+\sqrt{y-2}+\sqrt{4-z}=y^2-5z+11\\y+\sqrt{z-2}+\sqrt{4-x}=z^2-5x+11\\z+\sqrt{x-2}+\sqrt{4-y}=x^2-5y+11\end{matrix}\right.\)
Phân tích thành nhân tử
a) x4+5x3+10x-4
b) x8+x+1
c) x5+x4+1
d)xy(x+y)-yz(y+z)-zx(z-x)
cho x,y,z>0 và xyz=1. Cmr: \(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\ge\frac{3}{2}\)
1.Cho x, y, z > 0 thỏa \(x^2+y^2+z^2=x^2y^2z^2\). Tìm GTNN của \(P=\frac{x^2}{y^4}+\frac{y^2}{z^4}+\frac{z^2}{x^4}\)
2. Cho a,b,c> 0 và a + b + c = 0
Chứng minh: \(\frac{bc}{b+c+2a}+\frac{ca}{c+a+2b}+\frac{ab}{a+b+2c}\le1\)
1)
a, Cho x,y với xy lớn hơn hoặc bằng 0. Cm \(\left(x^2-y^2\right)^2\) lớn hơn hoặc bằng \(\left(x-y\right)^2\)
b, Cho \(x\cdot y\cdot z=1\) và \(x+y+z>\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\). Cm \(\left(x-1\right)\cdot\left(y-1\right)\cdot\left(z-1\right)>0\)
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\frac{8}{3}\left(x+y+z\right)\sqrt[3]{x^2y^2z^2}\)