x3+3x2y+3xy2+y3+z3-3x2y-3xy2-3xyz
= (x+y)3+z3-3xy(x+y+z)
=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=(x+y+z)(x2+y2+z2-xy-yz-xz)
Đó là cách của mình
Ta có: \(x^3+y^3+z^3-3xyz\)
= \(\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
=\(\left(\left(x+y\right)^3+z^3\right)-3xy\left(x+y+z\right)\)
= \(\left(x+y+z\right)\left(\left(x+y\right)^2-\left(x+y\right)z+z^2\right)-3xy\left(x+y+z\right)\)
= \(\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
= \(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)