⇔1/a+b−x − 1/x = 1/a + 1/b⇔1/a+b−x − 1/x = 1/a + 1/b
⇔2x−(a+b) / (a+b−x)x = 1/a + 1/b
<=>(a+b)(a+b−x)x=ab(2x−a−b)
<=>(a+b)2x−x2(a+b)=2abx−(a+b)ab
<=>x2(a+b)−(a2+b2)x−ab(a+b)=0
<=>(a+b)(a+b−x)x=ab(2x−a−b)
<=>(a+b)2x−x2(a+b)=2abx−(a+b)ab
<=>x2(a+b)−(a2+b2)x−ab(a+b)=0