Giải các pt với tham số là a,b,c
a , \(\dfrac{x-a}{3}=\dfrac{x+3}{a}-2\) e, \(3x+\dfrac{x}{a}-\dfrac{3a}{a+1}=\dfrac{4ax}{\left(a+1\right)^2}+\dfrac{\left(2a+1\right)x}{a\left(a+1\right)^2}-\dfrac{3a^2}{\left(a+1\right)^3}\)
b, \(\dfrac{x-a}{a+1}+\dfrac{x-1}{a-1}=\dfrac{2a}{1-a^2}\)
c, \(\dfrac{x+a-1}{a+2}+\dfrac{x-a}{a-2}+\dfrac{x-a}{4-a^2}\)
d, \(\dfrac{x-a}{b+c}+\dfrac{x-b}{c+a}+\dfrac{x-c}{a+b}=3\)
minh giai phan d, nha bn :
x-a/b+c + x-b/c+a + x-c/a+b=3
=> (x-a/b+c - 1)+(x-b/a+c - 1 )+(x-c/a+b - 1) = 3-3=0
=>x-a-b-c/b+c + x-a-b-c/a+c + x-a-b-c/a+b =0
=>(x-a-b-c)(1/b+c + 1/a+c + 1/a+b )=0
Vi 1/b+c + 1/a+c + 1/a+b luon lon hon 0=>x-a-b-c=0
=>x=a+b+c
x-a/b+c + x-b/c+a + x-c/a+b=3
=> (x-a/b+c - 1)+(x-b/a+c - 1 )+(x-c/a+b - 1) = 3-3=0
=>x-a-b-c/b+c + x-a-b-c/a+c + x-a-b-c/a+b =0
=>(x-a-b-c)(1/b+c + 1/a+c + 1/a+b )=0
Vi 1/b+c + 1/a+c + 1/a+b luon lon hon 0=>x-a-b-c=0
=>x=a+b+c
g, x - a / b + c + x - b/ c+a + x - c/ a+b = 3x / a+b+c