Bài 5: Phương trình chứa ẩn ở mẫu

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ma Kết Lạnh Lùng

Cho Pt \(\dfrac{x+a}{a-x}+\dfrac{x-a}{a+x}=\dfrac{a\left(3a+1\right)}{a^2-x^2}\)

a) GPT với a = -3

b) Tìm a biết x=\(\dfrac{1}{2}\)

Quốc Đạt
10 tháng 2 2019 lúc 19:22

\(\dfrac{x+a}{a-x}+\dfrac{x-a}{a+x}=\dfrac{a\left(3a+1\right)}{a^2-x^2}\)

\(\Leftrightarrow\dfrac{\left(x+a\right)\left(a+x\right)}{\left(a-x\right)\left(a+x\right)}+\dfrac{\left(x-a\right)\left(a-x\right)}{\left(a+x\right)\left(a-x\right)}=\dfrac{a\left(3a+1\right)}{a^2-x^2}\)

\(\Leftrightarrow\dfrac{\left(x+a\right)\left(a+x\right)+\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+x\right)}=\dfrac{a\left(3a+1\right)}{a^2-x^2}\)

\(\Leftrightarrow\dfrac{xa+x^2+a^2+ax+xa-x^2-a^2+ax}{\left(a-x\right)\left(a+x\right)}=\dfrac{a\left(3a+1\right)}{\left(a-x\right)\left(a+x\right)}\)

\(\Rightarrow4ax=a\left(3a+1\right)\)

<=> 4ax-a(3a+1)=0

<=> 4ax-3a2-a=0

<=> a(4x-3a-1)=0 (*)

a) Thay a=-3 vào phương trình ta có :

\(\dfrac{x-3}{-3-x}+\dfrac{x-3}{-3+x}=\dfrac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2-x^2}\)

ĐKXĐ : \(x\ne\pm3\)

(*) <=> -3[4x-3.(-3)-1]=0

<=> -3(4x+8)=0

<=> (-3).4x+(-3).8=0

<=> -12x-24=0

<=> -12x=24

<=> x=-2

Vậy phương trình có nghiệm x=-2

b) Thay x=1/2 vào phương trình ta có :

(*) \(\Leftrightarrow a\left(4.\dfrac{1}{2}-3a-1\right)=0\)

\(\Leftrightarrow a\left(2-3a-1\right)=0\)

<=> a(1-3a)=0

\(\Leftrightarrow\left[{}\begin{matrix}a=0\\1-3a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\\a=\dfrac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{0;\dfrac{1}{3}\right\}\)


Các câu hỏi tương tự
Xuân Huy
Xem chi tiết
Mai Phạm Phương
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Trần Đức Mạnh
Xem chi tiết
Trần Đức Mạnh
Xem chi tiết
kachan
Xem chi tiết
Giang Phạm
Xem chi tiết
Giang Phạm
Xem chi tiết
Hồng Minh
Xem chi tiết