\(x^2-\sqrt{x}+x-1\)
=\(x^2-1+\sqrt{x}\left(\sqrt{x}-1\right)\)
=\(\left(x+1\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)\)
=\(\left(\sqrt{x}-1\right)\left(x\sqrt{x}+x+\sqrt{x}+1+\sqrt{x}\right)\)
=\(\left(\sqrt{x}-1\right)\left(x\sqrt{x}+x+2\sqrt{x}+1\right)\)
\(x^2-\sqrt{x}+x-1\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(=\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{x}+1\right)\)
\(=\left(\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)\)