Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh Lê

Phân tích đa thức thành nhân tử :

\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+2abc\)

\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)

\(a^3\left(c-b^2\right)+b^3\left(a-c^2\right)+c^3\left(b-a^2\right)+abc\left(abc-1\right)\)

Hàn Vũ
29 tháng 10 2017 lúc 22:12

a(b2+c2)+b(c2+a2)+c(a2+b2)+22abc

= ab2+ac2+bc2+a2b+(a2c+b2c+2abc)

= ab(a+b)+c2(a+b)+c(a+b)2

= (a+b)(ab+c2+ac+bc)

= (a+b)[a(b+c)+c(b+c)

= (a+b)(b+c)(a+c)

b)

(a+b)(a2-b2)+(b+c)(b2-c2)+(a+c)(c2-a2)

= (a+b)(a2-b2)-(b+c)[(a2-b2)+(c2-a2)] +(a+c)(c2-a2)

= (a2-b2)(a+b-b-c) +(c2-a2)(a+c-b-c)

= (a2-b2)(a-c)+(c2-a2)(a-b)

= (a-b)(a2-ac+ab-bc +c2-a2)

= (a-b)[a(b-c)-c(b-c)]

= (a-b)(b-c)(a-c)

Nguyễn Ngọc Mai
29 tháng 10 2017 lúc 22:22

\(a^3\left(c-b^2\right)+b^3\left(a-c^2\right)+c^3\left(b-a^2\right)+abc\left(abc-1\right)\\ =a^3\left(c-b^2\right)+ab^3-b^3c^2+bc^3-a^2c^3+a^2b^2c^2-abc\\ =a^3\left(c-b^2\right)+bc^2\left(c-b^2\right)-ab\left(c-b^2\right)-a^2c^2\left(c-b^2\right)\\ =\left(c-b^2\right)\left(a^3+bc^2-ab-a^2c^2\right)\\ =\left(c-b^2\right)\left[a^2\left(a-c^2\right)-b\left(a-c^2\right)\right]\\ =\left(c-b^2\right)\left(a-c^2\right)\left(a^2-b\right)\)


Các câu hỏi tương tự
Hoàng Diệu Anh
Xem chi tiết
Hòa Đình
Xem chi tiết
anh phuong
Xem chi tiết
Hoàng Diệu Anh
Xem chi tiết
Lê Thị Khánh Huyền
Xem chi tiết
Nguyễn Bạch Gia Chí
Xem chi tiết
Hoàng Diệu Anh
Xem chi tiết
Hòa Đình
Xem chi tiết
Trịnh Thị Kim Hồng
Xem chi tiết