a) \(x^5+x^4+1\)
=\(x^5+x^4+x^2-x^2+1\)
=\(x^2\left(x^3-1\right)+\left(x^4+x^2+1\right)\)
=x2(x-1)(x2+x+1)+(x4+2x2+1-x2)
=\(\left(x^3-1\right)\left(x^2+x+1\right)+\left[\left(x^2+1\right)^2-x^2\right]\)
=\(\left(x^3-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\left(x^2-x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^3-1+x^2-x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^3+x^2-x\right)\)
b)
b) x^3-7x-6
=x^3-x-6x-6
=x(x^2-1)-6(x+1)
=x(x-1)(x+1)-6(x+1)
=(x^2-x-6)(x+1)
=(x+2)(x-3)(x+1)