c) \(xy(x-y)+yz(y-z)+xz(z-x)\)
\(=xy(x-y)-yz[(x-y)+(z-x)]+zx(z-x)\)
\(=(xy-yz)(x-y)+(zx-yz)(z-x)\)
\(=y(x-z)(x-y)+z(x-y)(z-x)\)
\(=(x-y)(z-x)(z-y)\)
d) \(x^4+4a^4=(x^2)^2+(2a^2)^2\)
\(=(x^2)^2+(2a^2)^2+2x^2.2a^2-4x^2a^2\)
\(=(x^2+2a^2)^2-(2xa)^2\)
\(=(x^2+2a^2-2ax)(x^2+2a^2+2ax)\)
e)
\(x^5+x+1=x^5-x^2+x^2+x+1\)
\(=x^2(x^3-1)+x^2+x+1\)
\(=x^2(x-1)(x^2+x+1)+(x^2+x+1)\)
\(=(x^2+x+1)[x^2(x-1)+1]=(x^2+x+1)(x^3-x^2+1)\)
f)
\(x^4+2013x^2+2012x+2013\)
\(=x^4-x+2013x^2+2013x+2013\)
\(=x(x^3-1)+2013(x^2+x+1)\)
\(=x(x-1)(x^2+x+1)+2013(x^2+x+1)\)
\(=(x^2+x+1)[x(x-1)+2013]=(x^2+x+1)(x^2-x+2013)\)
a)
\((a+b+c)^2+(a+b-c)^2-4c^2\)
\(=(a+b+c)^2+(a+b-c)^2-(2c)^2\)
\(=(a+b+c)^2+(a+b-c-2c)(a+b-c+2c)\)
\(=(a+b+c)^2+(a+b-3c)(a+b+c)\)
\(=(a+b+c)(a+b+c+a+b-3c)=(a+b+c)(2a+2b-2c)\)
\(=2(a+b+c)(a+b-c)\)
b) \(x^2-y^2+2x-4y-3\)
\(=(x^2+2x+1)-(y^2+4y+4)\)
\(=(x+1)^2-(y+2)^2\)
\(=[(x+1)-(y+2)][(x+1)+(y+2)]\)
\(=(x-y-1)(x+y+3)\)