A=\(x^3-2x^2+x\)
=x.(x2-2x+1)
=x(x-1)2
B=\(2x^2+4x+2-2y^2\)
=\(2\left(x^2+2x+1-y^2\right)\)
=\(2.\left[\left(x+1\right)^1-y^2\right]\)
=\(2\left(x+1-y\right)\left(x+1+y\right)\)
C=\(2xy-x^2-y^2+16\)
=\(-\left(-2xy+x^2+y^2-16\right)\)
=\(-\left[\left(x-y\right)^2-4^2\right]\)
=-(x-y-4)(x-y+4)
D=\(x^3+2x^2y+xy^2-9x\)
=\(x\left(x^2+2xy-y^2-9\right)\)
=\(x.\left[\left(x-y\right)^2-3^2\right]\)
=x.(x-y-3)(x-y+3)
E=\(2x-2y-x^2+2xy-y^2\)
\(=\left(2x-2y\right)-\left(x^2-2xy+y^2\right)\)
=\(2\left(x-y\right)-\left(x-y\right)\left(x-y\right)\)
=(x-y)(2x-2y-x+y)
=(x-y)(x+y)
a, \(A=x^3-2x^2+x\)
\(=x^3-x^2-x^2+x\)
\(=x^2\left(x-1\right)-x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-x\right)\)
\(=x\left(x-1\right)^2\)
b, \(B=2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1\right)-2y^2\)
\(=2\left(x+1\right)^2-2y^2\)
\(=2\left(x+1+y\right)\left(x+1-y\right)\)
c, \(C=2xy-x^2-y^2+16\)
\(=-\left[\left(x^2-2xy+y^2\right)-16\right]\)
\(=-\left[\left(x-y\right)^2-16\right]\)
\(=-\left(x-y-4\right)\left(x-y+4\right)\)
d, \(D=x^3+2x^2y+xy^2-9x\)
\(=x\left(x^2+2xy+y^2-9\right)\)
\(=x\left[\left(x+y\right)^2-3\right]\)
\(=x\left(x+y+3\right)\left(x+y-3\right)\)
e, \(E=2x-2y-x^2+2xy-y^2\)
\(=2\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(2-x+y\right)\)
a ) \(A=x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)
b ) \(B=2x^2+4x+2-2y^2=2\left(x^2+2x+1-y^2\right)=2\left[\left(x+1\right)^2-y^2\right]=2\left(x+1-y\right)\left(x+1+y\right)\)
c ) \(C=2xy-x^2-y^2+16=16-\left(x^2-2xy+y^2\right)=16-\left(x-y\right)^2=\left(4-x+y\right)\left(4+x+y\right)\)
d ) \(D=x^3+2x^2y+xy^2-9x=x\left(x^2+2xy+y^2-9\right)=x\left[\left(x+y\right)^2-9\right]=x\left(x+y-3\right)\left(x+y+3\right)\)
e ) \(E=2x-2y-x^2+2xy-y^2=-\left(x-y\right)^2+2\left(x-y\right)\)
Đặt \(x-y=a\) , ta được :
\(-a^2+2a\)
\(=-\left(a^2-2a+1\right)+1\)
\(=-\left(a-1\right)^2+1\)
\(=\left(1-a+1\right)\left(1+a-1\right)\)
\(=\left[1-\left(x-y\right)+1\right]\left[1+x-y-1\right]\)
\(=\left(2-x+y\right)\left(x-y\right)\)
a) A= x.(x2 - 2x + 1) = x.(x - 1 )2
b) B= 2.( x2 + 2x + 1 - y2 ) = 2.\(\left[\left(x+1\right)^2-y^2\right]\)
B = 2.(x + 1 - y ).(x + 1 + y)
c) C = - ( x2 - 2xy + y2 - 16) = \(\left[-\left(x-y\right)^2-4^2\right]\)
C = -( x- y-4).(x-y+4)
d) D = x.(x2 + 2xy + y2 - 9) = \(x.\left[\left(x+y\right)^2-3^2\right]\)
D = x.( x + y - 3 ).(x+ y + 3)
e) E = ( 2x - 2y ) - (x2 - 2xy +y2) = 2.(x - y) - ( x - y )2
E = ( x - y).2.( x - y)