a)
\(4x^4-21x^2y^2+y^4=(4x^4+4x^2y^2+y^4)-25x^2y^2\)
\(=(2x^2+y^2)^2-(5xy)^2\)
\(=(2x^2+y^2-5xy)(2x^2+y^2+5xy)\)
b)
\(x^5-5x^3+4x=x(x^4-5x^2+4)\)
\(=x(x^4-x^2-4x^2+4)\)
\(=x[x^2(x^2-1)-4(x^2-1)]\)
\(=x(x^2-4)(x^2-1)=x(x-2)(x+2)(x-1)(x+1)\)
c)
\(x^3+5x^2+3x-9=x^3-x^2+6x^2-6x+9x-9\)
\(=x^2(x-1)+6x(x-1)+9(x-1)\)
\(=(x-1)(x^2+6x+9)\)
\(=(x-1)(x^2+2.3x+3^2)=(x-1)(x+3)^2\)
d)
\(x^{16}+x^8-2=x^{16}-1^{16}+x^8-1^{16}\)
\(=(x-1)(x^{15}+x^{14}+...+x+1)+(x-1)(x^7+x^6+...+x+1)\)
\(=(x-1)(x^{15}+x^{14}+...+x^8+2x^7+2x^6+2x^5+...+2x+2)\)