1. Rút gọn
P=\(2\sqrt{1+\frac{1}{4}\left(\sqrt{\frac{1}{x}}-\sqrt{x}\right)^2}:\left[\sqrt{1+\frac{1}{4}\left(\sqrt{\frac{1}{x}}-\sqrt{x}\right)^2}-\frac{1}{2}\left(\sqrt{\frac{1}{x}}-\sqrt{x}\right)^2\right]\)
Rút gọn: \(P=1-\left(\frac{2x-1+\sqrt{x}}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right).\frac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\)
Rút gọn A = \(1-\left(\frac{2x-1+\sqrt{x}}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right).\left(\frac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right)\)
Rút gọn \(M=\left(\frac{2x+3\sqrt{x}}{2\sqrt{x}+1}+\frac{1}{x-\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right).\left(\frac{x-\sqrt{x}+1}{\sqrt{x}}\right)\)
Rút gọn:
\(\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}—2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
Rút gọn A = \(\left(\frac{x+2\sqrt{x}+4}{x\sqrt{x}-8}+\frac{x+2\sqrt{x}+1}{x-1}\right) :\left(3+\frac{1}{\sqrt{x}-2}+\frac{2}{\sqrt{x}+1}\right)\)
a, Rút gọn A b , Tìm x thỏa mãn A > 1 c,Tính A với \(x=\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt{2}}\)\(A=\frac{\sqrt{x}+1}{3\left(\sqrt{x}-1\right)}\)
RG
A = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
B = \(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\frac{1-x}{\sqrt{2}}\right)^2\)
Cho P=1-\(\left[\frac{2x-1+\sqrt{x}}{1-\sqrt{x}}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right]\frac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\)
a, Rút gọn P
b, Tìm x thuộc Z để P thuộc Z
\(\left(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)