Cho đường tròn tâm O, đường kính AB = 2R. Gọi d, và d, lần lượt là hai tiếp tuyến của đường tròn (O) tại hai điểm A và B. Gọi I là trung điểm của C. . và E là điểm thuộc đường tròn (O) (E không trùng với A và B). Đường thẳng d đi qua điểm E và vuông góc với EI cắt hai đường thẳng đ), d, lần lượt tại M, N. a) Chứng minh AMEI là tứ giác nội tiếp. b) Chứng minh ENI=EBI và MIN = 90. c) Chứng minh AM.BN = AI.BI d) Gọi F là điểm chính giữa của cung AB không chứa E của đường tròn (O). Hãy tính diện tích của tam giác MIN theo R khi ba điểm E, L, F thẳng hàng. Giúp e câu b,c,d ạ.
Cho đường tròn (O,R) và một điểm A cố định thuộc đường tròn. Trên tiếp tuyến với đường tròn (O) tại A , lấy một điểm k cố định. Một đường thẳng d thay đổi đi qua K và không đi qua tâm O, cắt (O) tại hai điểm B và C (B nằm giữa K và C). Gọi M là trung điểm của BC. 1)CMR 4 điểm A,O,M,K cùng nằm trên một đường tròn ,2)CMR KA bình phương =KB.KC=KO bình phương - R bình phương
Từ điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB và AC (B,C là các tiếp điểm ), đường thẳng qua A cắt đường tròn (O) tại D và E (D nằm giữa A và E, dây DE không đi qua tâm O). Gọi H là trung điẻm của DE, AE cắt BC tại K
a) Chứng minh tứ giác ABOC nội tiếp, xác định tâm đường tròn nội tiếp tứ giác ABOC
b) Chứng minh HA là tia phân giác của góc BHC
c) Chứng minh \(\dfrac{2}{AK}\)=\(\dfrac{1}{AD}\)+\(\dfrac{1}{AE}\)
Cho đường tròn (O,R) và đường thẳng d không đi qua điểm O cắt đường tròn tại hai điểm A, B. Lấy điểm M trên tia đối của tia BA ( điểm M không trùng với điểm B). Qua điểm M kẻ hai tiếp tuyến MC, MD với đường tròn (O) (C, D là các tiếp điểm). Đoạn thẳng OM cắt đoạn thẳng CD tại H, tia BH cắt đường tròn (O) tại điểm thứ hai là K. Chứng minh rằng:
a) Tứ giác MCOD là tứ giác nội tiếp.
b) HB.HK = HM.HO và MO là tia phân giác của BMK .
Cho (O; 5cm), điểm A nằm ngoài đường tròn sao cho OA = 10cm. Qua A vẽ tiếp tuyến AB với đường tròn (O) (B là tiếp điểm). Qua A kẻ cát tuyến không qua O cắt đường tròn (O) tại điểm C và D (C nằm giữa A và D). H là trung điểm của CD. Lấy điểm E đối xứng với B qua OA. Tính chu vi của tứ giác ABOE, ta được kết quả:
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyển AB, AC của đường tròn (O) với B và C là hai tiếp điểm. Vẽ đường kính BD của đường tròn (O), AD cắt đường tròn (0) tại E. Gọi H là giao điểm của OA và BC, K là trung điểm ED. a/ Chứng minh A, B, O, K, C nằm trên đường tròn b/ Chứng minh AE. AD= AC.AC c/ Vẽ OK cắt BC tại F. Chứng minh FD là tiếp tuyển của đường tròn (O).
Qua điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB và AC của đường tròn (B và C là các tiếp điểm).Gọi E là trung điểm của đoạn thẳng AC,F là giao điểm thú hai của đường thẳng EB với đường tròn (O),K là giao điểm thứ hai của đường thẳng AF với đường tròn (O).Chứng minh:
a.Tứ giác ABOC là tứ giác nội tiếp và tam giác ABF đồng dạng với tam giác AKB
b.BF . CK = CF . BK
Cho đường tròn (O;R), điểm M cố định nằm ngoài (O). Kẻ 2 tiếp tuyến MA,MB với đường tròn (O)(A,B là tiếp điểm). Qua M kẻ cát tuyến MCD bất kì không đi qua (O)(C nằm giữa M và D ). Gọi K là trung điểm của CD.
a, Chứng minh 5 điểm M,A,O,K,B cùng thuộc 1 đường tròn
b, Chứng minh MC.MD không phụ thuộc vào vị trí cát tuyến MCD
c, Gọi E là giao điểm của tia BK với đường tròn (O). Chứng minh AE song song với MK
Cho (O;R) và dây BC cố định không đi qua O. Từ A thuộc tia đối của tia BC vẽ các tiếp tuyến AM,AN với (O) (M, N là tiếp điểm,M thuộc cung nhỏ BC). Gọi I là trung điểm của BC,MI cắt (O) tại điểm thứ hai là P. Gọi giao của MN với OI là K. Tìm vị trí của A để diện tích tam giác ONK lớn nhất