nguyên hàm của f(x)=sin2x
Mn giúp e vs
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số :
a) \(f\left(x\right)=2x^3-2x^2-12x+1\) trên đoạn \(\left[-2;\dfrac{5}{2}\right]\)
b) \(f\left(x\right)=x^2\ln x\) trên đoạn \(\left[1;e\right]\)
c) \(f\left(x\right)=xe^{-x}\) trên nửa đoạn [0; +\(\infty\))
d) \(f\left(x\right)=2\sin x+\sin2x\) trên đoạn \(\left[0;\dfrac{3}{2}\pi\right]\)
Nêu tính chất của hàm số mũ, hàm số lôgarit, mối liên hệ giữa đồ thị các hàm số mũ và hàm số lôgarit cùng cơ số ?
Phát biểu các điều kiện cần và đủ để hàm số \(f\left(x\right)\) đơn điệu trên một khoảng ?
Cho hàm số :
\(y=\dfrac{\left(2+m\right)x+m-1}{x+1}\) (1)
a) Khảo sát sự biến thiên và vẽ đồ thi của hàm số với m = 2
b) Xác định các điểm có tọa độ nguyên trên đồ thị của (1) khi \(m\in\mathbb{Z}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số :
a) \(f\left(x\right)=\ln\left(x^2+x-2\right)\) trên đoạn \(\left[3;6\right]\)
b) \(f\left(x\right)=\cos^2x+\cos x+3\)
Cho hàm số :
\(y=2-\dfrac{2}{x-2}\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
b) Từ (C) vẽ đồ thị của hàm số
\(y=\left|\dfrac{2\left(x-3\right)}{x-2}\right|\) (1)
Dựa vào đồ thị (1), hãy biện luận theo k số nghiệm của phương trình
\(\left|\dfrac{2\left(x-3\right)}{x-2}\right|=\log_2k\) (2)
c) Tìm các điểm thuộc (C) có tọa độ nguyên ?
Phát biểu các điều kiện đủ để hàm số \(f\left(x\right)\) có cực trị (cực đại, cực tiểu) tại điểm \(x_0\) ?
Cho hàm số \(y=\dfrac{2}{2-x}\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
b) Tìm các giao điểm của (C) và đồ thị của hàm số \(y=x^2+1\). Viết phương trình tiếp tuyến của (C) tại mỗi giao điểm
c) Tính thể tích vật thể tròn xoay thu được khi quay hình phẳng H giới hạn bởi đồ thị (C) và các đường thẳng \(y=0;x=0;x=1\) xung quanh trục Ox