a) M(x) = 3x3 – 5x + 2x2 + 9 = 3x3 + 2x2 - 5x + 9
N(x) = 5 – 4x + 3x3 – 2x2 = 3x3 - 2x2 - 4x + 5
b) M (x) + N(x) = 3x3 + 2x2 - 5x + 9 + 3x3 - 2x2 - 4x + 5
= ( 3x3 + 3x3 ) + ( 2x2 - 2x2 ) + ( -5x - 4x) + ( 9 + 5 )
= 6x3 - 9x + 14
M (x) - N (x) = 3x3 + 2x2 - 5x + 9 - (3x3 - 2x2 - 4x + 5)
= 3x3 + 2x2 - 5x + 9 - 3x3 + 2x2 + 4x - 5
= ( 3x3 - 3x3 ) + ( 2x2 + 2x2 ) + ( -5x + 4x ) + ( 9 - 5)
= 4x2 - x + 4
b)\(M\left(x\right)+N\left(x\right)=3x^3+2x^2-5x+9+3x^3-2x^2-4x+5x+5\)
\(M\left(x\right)+N\left(x\right)=6x^3-9x+14\)
\(M\left(x\right)-N\left(x\right)=3x^3+2x^2-5x+9-3x^3+2x^2+4x-5\)
\(M\left(x\right)-N\left(x\right)=4x^2-x+4\)
a)\(M\left(x\right)=3x^3+2x^2-5x+9\)
\(N\left(x\right)=3x^3-2x^2-4x+5x+5\)
a. M(x) = 3x3 + 2x2 – 5x + 9
N(x) =3x3 – 2x2 – 4x + 5
M(x) + N(x) = (3x3 + 2x2 – 5x + 9) + (3x3 – 2x2 – 4x + 5)
= 3x3 + 2x2 – 5x + 9 + 3x3 – 2x2 – 4x + 5
= (3x3+ 3x3) + ( 2x2 – 2x2) + (– 5x – 4x) + ( 9 + 5)
= 6x3 - 9x + 14
M(x) - N(x) = (3x3 + 2x2 – 5x + 9) - (3x3 – 2x2 – 4x + 5)
=3x3+2x2–5x+9-3x3+2x2+4x-5
= (3x3-3x3)+(2x2+2x2)+(–5x+4x)+(–5+9)
= 4x2 - x + 4