Phương trình bậc nhất một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Aeri Park

Một ngươi đi xe máy từ A đến B với vận tốc dự định là 40km/h. Sau khi đi được 1 giờ với vận tốc đó, người đó nghỉ 15 phút và tiếp tục đi. Để đếnB kịp thời gian đã định, người đó tăng thêm 5km/h. Tính quãng đường AB

Phúc Hoàng
21 tháng 4 2017 lúc 13:30

120km

dmtthọ ltv
21 tháng 4 2017 lúc 14:50

1+1/4 +(s-40)/45 = s/40

s = 130km

๖ۣۜTina Ss
23 tháng 4 2017 lúc 17:19

\(\)Đổi 15 phút = \(\dfrac{1}{4}h\)

Độ dài quãng đường người đó đi được trước lúc nghỉ là: 40.1=40 (km)

Gọi độ dài quãng đường AB là x (km); x > 40

Khi đó: Thời gian người đó dự định đi hết quáng đường AB là: \(\dfrac{x}{40}\)

Độ dài quãng đường người đó đi được sau khi nghỉ là: x - 40

Vận tốc của người đó đi được sau khi nghỉ là: 40 + 5 = 45

Thời gian người đó đi được sau khi nghỉ là: \(\dfrac{x-40}{45}\)

Theo bài ra ta có phương trình:

\(1+\dfrac{x-40}{45}+\dfrac{1}{4}=\dfrac{x}{40}\)

\(\Leftrightarrow\dfrac{360}{360}+\dfrac{8\left(x-40\right)}{360}+\dfrac{90}{360}=\dfrac{9x}{360}\)

\(\Leftrightarrow360+8x-320+90=9x\)

\(\Leftrightarrow-x=-130\)

\(\Leftrightarrow x=130\) ( Thỏa mãn điều kiện của ẩn)

Vậy quãng đường AB dài 130 km.


Các câu hỏi tương tự
Thu Hàn
Xem chi tiết
Gojo Satoru
Xem chi tiết
Ngân Lê Bảo
Xem chi tiết
Nguyễn Hương
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Nathan Hoang
Xem chi tiết
Hoc sinh 2009
Xem chi tiết
Nguyễn Quang
Xem chi tiết
Shinichi Kudo
Xem chi tiết