a) Ta có: \(\overrightarrow {AB} = \left( {10;5} \right),\overrightarrow {AC} = \left( {6; - 4} \right),\overrightarrow {BC} = \left( { - 4; - 9} \right)\)
+) Đường thẳng AB nhận vectơ \(\overrightarrow {AB} = \left( {10;5} \right)\)làm phương trình chỉ phương và đi qua điểm \(A( - 1;1)\)nên có phương trình tham số là: \(\left\{ \begin{array}{l}x = - 1 + 10t\\y = 1 + 5t\end{array} \right.\)
+) Đường thẳng AC nhận vectơ \(\overrightarrow {AC} = \left( {6; - 4} \right)\)làm phương trình chỉ phương và đi qua điểm \(A( - 1;1)\)nên có phương trình tham số là: \(\left\{ \begin{array}{l}x = - 1 + 6t\\y = 1 - 4t\end{array} \right.\)
+) Đường thẳng BC nhận vectơ \(\overrightarrow {BC} = \left( { - 4; - 9} \right)\)làm phương trình chỉ phương và đi qua điểm \(B\left( {9;6} \right)\)nên có phương trình tham số là: \(\left\{ \begin{array}{l}x = 9 - 4t\\y = 6 - 9t\end{array} \right.\)
b) Ta có vectơ pháp tuyến của hai đường thẳng AB và AC lần lượt là: \(\overrightarrow {{n_1}} = \left( {1; - 2} \right),\overrightarrow {{n_2}} = \left( {2;3} \right)\)
\(\cos \left( {AB,AC} \right) = \cos \left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right) = \frac{{\left| {1.2 + \left( { - 2} \right).3} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2}} \sqrt {{2^2} + {3^2}} }} = \frac{{4\sqrt {65} }}{{65}} \Rightarrow \left( {AB,AC} \right) = 60^\circ 15'\)
Vậy góc giữa hai đường thẳng AB và AC là \(60^\circ 15'\)
c) Đường thẳng BC nhận vectơ \(\overrightarrow {BC} = \left( { - 4; - 9} \right)\) làm vectơ chỉ phương nên có vectơ pháp tuyến là \(\overrightarrow n = \left( {9; - 4} \right)\) và đi qua \(B\left( {9;6} \right)\), suy ra phương trình tổng quát của đường thẳng BC là:
\(9.\left( {x - 9} \right) - 4\left( {y - 6} \right) = 0 \Leftrightarrow 9x - 4y - 57 = 0\)
Khoảng cách từ \(A( - 1;1)\) đến đường thẳng BC là:
\(d\left( {A,BC} \right) = \frac{{\left| {9.\left( { - 1} \right) - 4.1 - 57} \right|}}{{\sqrt {{9^2} + {{\left( { - 4} \right)}^2}} }} = \frac{{70\sqrt {97} }}{{97}}\)