a) Ta có: \(\overrightarrow {BC} = \left( {4;2} \right)\) \(\Rightarrow VTPT: \overrightarrow {n_{BC}} = \left( {2; - 4} \right)\)
Phương trình tổng quát của đường thẳng BC đi qua điểm \(B(1;2)\) và nhận vectơ \(\overrightarrow n = \left( {2; - 4} \right)\) làm VTPT là:
\(2\left( {x - 1} \right) - 4\left( {y - 2} \right) = 0 \Leftrightarrow 2x - 4y + 6 = 0\)
b) M là trung điểm của BC nên ta có tọa độ điểm M là \(M\left( {3;3} \right)\)
Đường thẳng AM đi qua điểm \(A\left( {2;5} \right)\) và nhận vectơ \(\overrightarrow {AM} = \left( {1; - 2} \right)\) làm vectơ chỉ phương nên ta có phương trình tham số của trung tuyến AM là:
\(\left\{ \begin{array}{l}x = 2 + t\\y = 5 - 2t\end{array} \right.\)
c) Ta có: \(AH \bot BC\) nên đường cao AH nhận vectơ \(\overrightarrow {BC} = \left( {4;2} \right)\) làm vectơ pháp tuyến
Đường thẳng AH đi qua \(A\left( {2;5} \right)\) và nhận vectơ \(\overrightarrow {BC} = \left( {4;2} \right)\) làm vectơ pháp tuyến, suy ta phương trình tổng quát của đường cao AH là:
\(4\left( {x - 2} \right) + 2\left( {y - 5} \right) = 0 \Leftrightarrow 4x + 2y - 18 = 0\)