Cho hình chóp S.ABCD, ABCD là hình bình hành đáy là tâm O. M là trung điểm của SB, N thuộc SC sao cho SN=2NC.
Tìm giao
a) (SAC) và (SBD)
b) (DMN) và (SAB); (DMN và (SAD)
c) Tìm thiết diện của (OMN)
d) P là trung điểm của AD/ Tìm giao SA và (MNP)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N là trung điểm của SB và SD,P thuộc SC sao cho PC<PS. Tìm giao tuyến của 2 mặt phẳng:
a,(SAC) và (SBD)
b,(MNP) và (SBD)
c,(MNP) và (SAC)
d,(MNP) và (SAB)
e,(MNP) và (SAD)
f,(MNP) và (ABCD)
Đề toán: Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành tâm O.
a/ Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD).
b/ Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC).
c/ Gọi M, N lần lượt là trung điểm của SA và SB, K là một điểm nằm giữa B và C. Tìm thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK).
Cho hình chóp SABCD, có đáy ABCD là một hình bình hành tâm O.
Gọi I, K lần lượt là trung điểm của SB và SD.
a) Tìm giao tuyến của (SAC) và (SBD).
b) Tìm giao điểm J của SA với (CKB).
c) Tìm giao tuyến của (OIA) và (SCD)
Cho hình chóp SABCD, đáy ABCD là hình bình hành có tâm O và M,N là lần lượt là trung điểm SB,SC.
1/ Tìm giao tuyến (SAC) với (SBD) và (SAB) với (SCD)
2/ Chứng minh ADNM là hình thang và MO // (SAD)
3/ Gọi K là giao điểm của AN và DM. Chứng minh ba điểm S,O,K thẳng hàng
4/ Gọi E trên đường chéo AC sao cho AE=2EC. Chứng minh KE // (SBC)
Cho chóp S.ABCD đáy là hình bình hành tâm O. M là điểm trên cạnh SD sao cho SD = 3SM.
a) Tìm giao tuyến (SAC) và (SBD); (SAB) và (SCD)
b) Tìm giao điểm I của BM và (SAC) . Chứng tỏ I là trung điểm của SO
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là điểm thuộc SA sao cho SM=3MA. a, Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). b, Tìm giao tuyến H của MO và mặt phẳng (SCD)
Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M,N là trung điểm SB,SC; lấy điểm P thuộc SA.
a. Tìm giao tuyến của (SAB) và (SCD)
b. Tìm giao điểm SD và (MNP)
c. Tìm thiết diện hình chóp và (MNP). Thiết diện là hình gì?