Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
camcon

Mọi người chỉ mình ạ! 

Bài 1: giải phương trình 

\(\sqrt{5x^2}=2x-1\)

* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé 

* Với nhưng dạng thế nào thì có thể bình phương ạ! 

Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. 

* Nó có phụ thuộc vào dạng bài không ạ hay là chỉ có những bài mới được làm như vậy còn chỉ có những bài thì phải tìm điều kiện ngay từ đầu ạ ( và làm như vậy có bị mất trường hợp nào đi không) . giải thích tại sao 

Bài 3: 

Ví dụ: \(x^2\ge2x\) . 

* Tại sao khi mà chia cả hai vế cho x thì chỉ nhân 1 trường hợp ( bị thiếu trường hợp). Còn khi mà chuyển vế sang cho lớn hơn hoặc bằng 0 thì lại đủ trường hợp. giải thích mình tại sao lại bị thiếu và đủ trường hợp ạ! 

Giups mình đầy đủ chỗ (*) nhá! 

Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 21:57

Bài 1: 

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

Ta có: \(\sqrt{5x^2}=2x-1\)

\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)

\(\Leftrightarrow5x^2-4x^2+4x-1=0\)

\(\Leftrightarrow x^2+4x-1=0\)

\(\text{Δ}=4^2-4\cdot1\cdot\left(-1\right)=20\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-4-2\sqrt{5}}{2}=-2-\sqrt{5}\left(loại\right)\\x_2=\dfrac{-4+2\sqrt{5}}{2}=-2+\sqrt{5}\left(loại\right)\end{matrix}\right.\)

Akai Haruma
19 tháng 8 2021 lúc 22:03

Bài 1: Bình phương hai vế lên có giải ra được kết quả. Nhưng phải kèm thêm điều kiện $2x-1\geq 0$ do $\sqrt{5x^2}\geq 0$

PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 5x^2=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x^2+4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2)^2-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2-\sqrt{5})(x+2+\sqrt{5})=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x=-2\pm \sqrt{5}\end{matrix}\right.\) (vô lý)

Vậy pt vô nghiệm.

Akai Haruma
19 tháng 8 2021 lúc 22:04

Bài 2: ĐKXĐ luôn là thứ mà phải ghi ngay đầu bài làm để xác định được biểu thức có nghĩa. Tức là em ghi ĐKXĐ: $x+1\geq 0$ đầu tiên.

Sau đó mới giải ra $\sqrt{x+1}=1$

Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 22:05

Bài 2: 

Ta có: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)

\(\Leftrightarrow x+1=1\)

hay x=0

Akai Haruma
19 tháng 8 2021 lúc 22:07

Bài 3: Muốn chia cả 2 vế cho $x$ thì $x\neq 0$ mới chia được. Do đó nó luôn bị thiếu TH $x=0$

Còn khi chuyển vế thì đưa nó về dạng $ab\geq 0$ thì đương nhiên ta xét được đầy đủ các TH dấu của nó rồi. Cái này hiển nhiên mà em?


Các câu hỏi tương tự
camcon
Xem chi tiết
camcon
Xem chi tiết
camcon
Xem chi tiết
camcon
Xem chi tiết
camcon
Xem chi tiết
Mai trần
Xem chi tiết
Mai Trần
Xem chi tiết
Mai trần
Xem chi tiết
camcon
Xem chi tiết