Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a^4+b^4)(a^2+b^2)\geq (a^3+b^3)^2\)
\(\Rightarrow \frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{(a^3+b^3)^2}{ab(a^3+b^3)(a^2+b^2)}=\frac{a^3+b^3}{ab(a^2+b^2)}(1)\)
Tiếp tục áp dụng BĐT Bunhiacopxky:
\((a^3+b^3)(a+b)\geq (a^2+b^2)^2\)
Mà theo hệ quả BĐT AM-GM: \(a^2+b^2\geq \frac{(a+b)^2}{2}\)
Suy ra \((a^3+b^3)(a+b)\geq (a^2+b^2)\frac{(a+b)^2}{2}\)
\(\Leftrightarrow a^3+b^3\geq \frac{(a+b)(a^2+b^2)}{2}(2)\)
Từ (1); (2) suy ra \(\frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{a^3+b^3}{ab(a^2+b^2)}\geq \frac{a+b}{2ab}\)
Tương tự với các phân thức còn lại và cộng theo vế thu được:
\(\sum \frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{a+b}{2ab}+\frac{b+c}{2bc}+\frac{a+c}{2ac}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c\)