§2. Phương trình quy về phương trình bậc nhất, bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lương Trần

mn giải hộ tôi mới..

x^4+3x^3-2x^2+3X+1=0

x^4-2x^3-5x^2+2x+1=0

Mysterious Person
20 tháng 2 2018 lúc 9:22

a) ta có : \(x^4+3x^3-2x^2+3x+1=0\)

\(\Leftrightarrow x^4-x^3+x^2+4x^3-4x^2+4x+x^2-x+1=0\)

\(\Leftrightarrow x^2\left(x^2-x+1\right)+4x\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2+4x+1\right)\left(x^2-x+1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+4x+1=0\\x^2-x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}-2+\sqrt{3}\\-2-\sqrt{3}\end{matrix}\right.\\x\in\varnothing\end{matrix}\right.\) vậy \(x=-2+\sqrt{3};x=-2-\sqrt{3}\)

b) ta có : \(x^4-2x^3-5x^2+2x+1=0\)

\(\Leftrightarrow x^4+x^3-x^2-3x^3-3x^2+3x-x^2-x+1=0\)

\(\Leftrightarrow x^2\left(x^2+x-1\right)-3x\left(x^2+x-1\right)-\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\left(x^2-3x-1\right)\left(x^2+x-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x-1=0\\x^2+x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{3+\sqrt{13}}{2}\\x=\dfrac{3-\sqrt{13}}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)

vậy \(x=\dfrac{3+\sqrt{13}}{2};x=\dfrac{3-\sqrt{13}}{2};x=\dfrac{-1+\sqrt{5}}{2};x=\dfrac{-1-\sqrt{5}}{2}\)


Các câu hỏi tương tự
Hữu Lộc Trần
Xem chi tiết
ha
Xem chi tiết
Thảo
Xem chi tiết
Nguyễn Anh Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Đào Thành Lộc
Xem chi tiết
Ha Linh Duong
Xem chi tiết
Trần Hoàng Việt
Xem chi tiết