1,\(pt\Leftrightarrow11x^2-5x+6=x^3+5x^2+6x\)
\(\Leftrightarrow x^3-6x^2+11x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\x=1\end{matrix}\right.\)(tm)
2,\(pt\Leftrightarrow\frac{1}{x+1}+\frac{2}{x^2-x+1}=\frac{2x+3}{x^3+1}\)
\(\Leftrightarrow\frac{x^2-x+1+2x+2}{x^3+1}=\frac{2x+3}{x^3+1}\)
\(\Rightarrow x^2-x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
3,\(pt\Leftrightarrow\frac{1}{2-x}-\frac{x}{1-2x}=2\)
\(\Rightarrow1-2x-2x+x^2=4-10x+4x^2\)
\(\Leftrightarrow3x^2-6x+3=0\)
\(\Leftrightarrow x=1\)