Tìm Min mà mấy chế nói cái huần hòe gì thế
\(x\left(x+1\right)=x^2+x=x^2+2.x.\dfrac{1}{2}+\dfrac{1}{2}^2-\dfrac{1}{2}^2=\left(x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
Vậy: Min=\(-\dfrac{1}{4}\) khi x= \(-\dfrac{1}{2}\)
Đặt:
\(max=x\left(x+1\right)\)
\(max=x^2+x\)
\(max=x^2+x+\dfrac{1}{4}-\dfrac{1}{4}\)
\(max=\left(x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu "=" xảy ra khi: \(x=-\dfrac{1}{2}\)
Vậy \(min_{max}=-\dfrac{1}{4}\) khi \(x=-\dfrac{1}{2}\)