\(x\rightarrow2^-\Rightarrow x< 2\Rightarrow\left|x-2\right|=-\left(x-2\right)\)
\(\Rightarrow\lim\limits_{x\rightarrow2^-}\frac{\left|x-2\right|}{x-2}=\lim\limits_{x\rightarrow2^-}=\frac{-\left(x-2\right)}{x-2}=-1\)
\(x\rightarrow2^-\Rightarrow x< 2\Rightarrow\left|x-2\right|=-\left(x-2\right)\)
\(\Rightarrow\lim\limits_{x\rightarrow2^-}\frac{\left|x-2\right|}{x-2}=\lim\limits_{x\rightarrow2^-}=\frac{-\left(x-2\right)}{x-2}=-1\)
\(lim_{x\rightarrow2^-}\frac{x^2-4}{\sqrt{\left(x^2+1\right)\left(2-x\right)}}\)
\(lim_{x\rightarrow2}\dfrac{3x-5}{\left(x-2\right)^2}\)
\(lim_{x\rightarrow2^-}\left(\dfrac{1}{x-2}-\dfrac{1}{x^2-4}\right)\)
\(lim_{x\rightarrow2^+}\frac{3}{x-2}\sqrt{\frac{x+4}{4-x}}\)
Tính giới hạn
a, \(Lim_{n->+\infty}\frac{1+sin\left(n\right)+2^{n+2}}{2-2n+2^n}\)
b,\(Lim_{x->0}\frac{e^x-1-xcos\left(x\right)}{x\left(e^{2x}-1\right)}\)
c,\(Lim_{n->+\infty}\sqrt[2n]{8^n+9^n}\)
d,\(Lim_{x->0}\frac{\ln\left(1+x\right)-xe^3}{x\tan\left(2x\right)}\)
Tính giới hạn
a, \(Lim_{n->+\infty}\frac{1+sin\left(n\right)+2^{n+2}}{2-2n+2^n}\)
b,\(Lim_{x->0}\frac{e^x-1-xcos\left(x\right)}{x\left(e^{2x}-1\right)}\)
c,\(Lim_{n->+\infty}\sqrt[2n]{8^n+9^n}\)
d,\(Lim_{x->0}\frac{\ln\left(1+x\right)-xe^3}{x\tan\left(2x\right)}\)
\(lim_{x\rightarrow1^-}\frac{\sqrt{x^2-x+3}}{2\left|x\right|-1}\)
Xác định \(lim_{x\rightarrow0}\frac{\left|x\right|}{x^2}\)
Tìm giới hạn :
\(lim_{x\rightarrow2^+}\dfrac{x^2-3x+3}{x-2}\)