a. \(\lim\limits_{x\rightarrow a}\frac{x\sqrt{x}-a\sqrt{a}}{\sqrt{x}-\sqrt{a}}\) e. \(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x}\)
b. \(\lim\limits_{x\rightarrow1}\frac{\sqrt[n]{x}-1}{\sqrt[m]{x}-1}\left(m,n\in Z^+\right)\) f. \(\lim\limits_{x\rightarrow2}\frac{\sqrt[3]{8x+11}-\sqrt{x+7}}{x^2-3x+2}\)
c. \(\lim\limits_{x\rightarrow1}\frac{\left(1-\sqrt{x}\right)\left(1-\sqrt[3]{x}\right)\left(1-\sqrt[4]{x}\right)\left(1-\sqrt[5]{x}\right)}{\left(1-x\right)^4}\) g. \(\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{3x-2}-\sqrt{2x-1}}{x^3-1}\)
d. \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}\right)\) h. \(\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{x+9}+\sqrt[3]{2x-6}}{x^3+1}\)
Tính giới hạn
a, \(Lim_{n->+\infty}\frac{1+sin\left(n\right)+2^{n+2}}{2-2n+2^n}\)
b,\(Lim_{x->0}\frac{e^x-1-xcos\left(x\right)}{x\left(e^{2x}-1\right)}\)
c,\(Lim_{n->+\infty}\sqrt[2n]{8^n+9^n}\)
d,\(Lim_{x->0}\frac{\ln\left(1+x\right)-xe^3}{x\tan\left(2x\right)}\)
Tính giới hạn
a, \(Lim_{n->+\infty}\frac{1+sin\left(n\right)+2^{n+2}}{2-2n+2^n}\)
b,\(Lim_{x->0}\frac{e^x-1-xcos\left(x\right)}{x\left(e^{2x}-1\right)}\)
c,\(Lim_{n->+\infty}\sqrt[2n]{8^n+9^n}\)
d,\(Lim_{x->0}\frac{\ln\left(1+x\right)-xe^3}{x\tan\left(2x\right)}\)
Bài 1
a. \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3-x^2}-x\right)\)
b. \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt[3]{x^3+5x^2}-\sqrt[3]{x^3+8x}\right)\)
c. \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt[3]{x^3+1}-x\right)\)
Bài 2
a. \(\lim\limits_{x\rightarrow1^-}\left(\frac{2}{x^2-1}-\frac{1}{x-1}\right)\)
b. \(\lim\limits_{x\rightarrow1^+}\left(\frac{1}{1-x}-\frac{3}{1-x^3}\right)\)
c. \(\lim\limits_{x\rightarrow2^+}\left(\frac{1}{x^2-3x+2}-\frac{1}{x^2-5x+6}\right)\)
\(lim_{x\rightarrow2^-}\frac{x^2-4}{\sqrt{\left(x^2+1\right)\left(2-x\right)}}\)
Tính \(lim_{x\rightarrow1}\dfrac{\sqrt{2x+7}-3}{x^3-2x^2+2022x-2021}\)
\(lim_{x\rightarrow\left(-1\right)^+}\left(x^3+1\right)\left(\sqrt{\dfrac{3x}{x^2-1}}\right)\)
Cho \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-2x+1}{x-1}=3\)
Tính \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3f\left(x\right)+1}-x-1}{\sqrt{4x+5}-3x-2}\)
Tìm giới hạn sau:
A=\(\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{x^2}-2\sqrt[3]{x}+1}{\left(x-1\right)^2}\)