\(=\frac{3\sqrt{3}}{0^+}=+\infty\)
\(=\frac{3\sqrt{3}}{0^+}=+\infty\)
\(lim_{x\rightarrow2^-}\frac{x^2-4}{\sqrt{\left(x^2+1\right)\left(2-x\right)}}\)
\(lim_{x\rightarrow2^-}\frac{\left|x-2\right|}{x-2}\)
\(lim_{x\rightarrow2^-}\left(\dfrac{1}{x-2}-\dfrac{1}{x^2-4}\right)\)
tìm các giới hạn sau:
a; \(\lim\limits_{x\rightarrow\frac{\pi}{2}}\frac{sin\left(x-\frac{\pi}{4}\right)}{x}\)
b, \(\lim\limits_{x\rightarrow2}\frac{\sqrt[3]{3x^2-4}-\sqrt{3x-2}}{x+1}\)
c,\(\lim\limits_{x\rightarrow0}x^2sin\frac{1}{2}\)
a. \(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+2x}-1}{2x}\) f. \(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7-3}}{2-\sqrt{x+3}}\)
b. \(\lim\limits_{x\rightarrow0}\frac{4x}{\sqrt{9+x}-3}\) g. \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x^2+1}-1}{\sqrt{x^2+16}-4}\)
c. \(\lim\limits_{x\rightarrow2}\frac{\sqrt{x+7}-3}{x-2}\) h. \(\lim\limits_{x\rightarrow4}\frac{\sqrt{x+5}-\sqrt{2x+1}}{x-4}\)
d. \(\lim\limits_{x\rightarrow1}\frac{3x-2\sqrt{4x^2-x-2}}{x^2-3x+2}\) k. \(\lim\limits_{x\rightarrow0}\frac{\sqrt{x+1}+\sqrt{x+4}-3}{x}\)
e. \(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+7}+x-4}{x^3-4x^2+3}\)
\(lim_{x->\frac{+}{ }\infty}\frac{\sqrt{x^2+3x+5}}{\sqrt[3]{x^3+7x^2+8}}\)
\(Lim_{x\to3}\)\(\frac{2 - \sqrt(x+1)\sqrt[3](x-2)}{2- \sqrt(x-2)\sqrt[3](x+5)}\)
\(lim_{x->1}\frac{\sqrt[3]{8x+11}-\sqrt{x+7}}{x^2-3x+2}\)
a. \(\lim\limits_{x\rightarrow2}\frac{\sqrt[3]{4x}-2}{x-2}\) b. \(\lim\limits_{x\rightarrow3}\frac{2+\sqrt[3]{19-x^3}}{\sqrt{4x-3}-3}\)