\(\Leftrightarrow\left|x^2+1\right|\cdot\left(\left|x\right|-9\right)=0\)
=>x=9 hoặc x=-9
\(\Leftrightarrow\left|x^2+1\right|\cdot\left(\left|x\right|-9\right)=0\)
=>x=9 hoặc x=-9
\(\left|x^3+x\right|-\left|9x^2+9\right|=0\)
Bài 1 : Tìm x biết :
a) \(3\left|x-1\right|+3\left|3x-5\right|=2\) b)\(\left|x+2\right|+\left|2x-1\right|+\left|5x-15\right|=10\)
Bài 2 :
a)\(\left|6x-9\right|+\left|9x-33\right|=13\) b)\(\left|x+1\right|+\left|3x-2\right|+\left|6x-24\right|=15\)
a) \(\left(x-2\right)\left(x+1\right)< 0\)
b) \(\left(x+\dfrac{1}{3}\right)\left(x-1\right)\)> hoặc = 0
Cho da thuc :
f(x) \(2.\left(3x-1\right).\left(x+1\right)+\left(15x-10\right).\left(x-4\right)+9x-6\)
Tìm nghiệm của các đa thức sau :
a) \(m\left(x\right)=x^2+7x-8\)
b) \(f\left(x\right)=\left(x-3\right)\left(16-4x\right)\)
c) \(n\left(x\right)=5x^2+9x+4\)
\(a\left(X+1\right).\left(X-2\right)< 0\)
\(b\left(x-2\right).\left(x+\frac{2}{3}\right)>0\)
Bài 4.1: Tìm x, biết
a) \(4\left|3x-1\right|+\left|x\right|-2\left|x-5\right|+7\left|x-3\right|=12\)
b) \(3\left|x+4\right|-\left|2x+1\right|-5\left|x+3\right|+\left|x-9\right|=5\)
c) \(\left|2\frac{1}{5}-x\right|+\left|x-\frac{1}{5}\right|+8\frac{1}{5}=1,2\)
d) \(2\left|x+3\frac{1}{2}\right|+\left|x\right|-3\frac{1}{2}=\left|2\frac{1}{5}-x\right|\)
Tìm x,y biết
\(\left(x-3\right)^2+\left(y+2\right)^2=0\)
\(2\times x+2^{x+3}=136\)
\(\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\)
\(\left(2\times x-5\right)^{2000}+\left(3\times y+4\right)^{2002}\le0\)
Tìm x biết:
a) \(\dfrac{-32}{\left(-2\right)^x}=4\) f) \(\left(3x-1\right)^3=\dfrac{-8}{27}\)
b) \(\left(\dfrac{1}{2}\right)^{2x-1}=\dfrac{1}{8}\) g) \(\left(2x+3\right)^2=\dfrac{9}{121}\)
c) \(\dfrac{1}{9}.27^x=3^x\) h) \(5^x+5^{x+2}=650\)
d) \(9^x:3^3=\dfrac{1}{243}\) i) \(\left(x-7\right)^{x+1}-\left(x-7\right)=0\)
e) \(\dfrac{x7}{81}=27\) m) \(\left(\dfrac{-3}{4}\right)^{3x-1}=\dfrac{256}{81}\)