\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}\cdot\sqrt{a}\right)\cdot\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(\dfrac{1^3-\left(\sqrt{a}\right)^3}{1-\sqrt{a}}\cdot\sqrt{a}\right)\cdot\dfrac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
\(=\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}\cdot\sqrt{a}\cdot\dfrac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
\(=\left(1+\sqrt{a}+a\right)\cdot\sqrt{a}\cdot\dfrac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
\(=\sqrt{a}+a+a\sqrt{a}\cdot\dfrac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)^2\left(1+\sqrt{a}\right)^2}\)
\(=\sqrt{a}+a+a\sqrt{a}\cdot\dfrac{1}{\left(1+\sqrt{a}\right)^2}\)
\(=\dfrac{\sqrt{a}+a+a\sqrt{a}}{1+2\sqrt{a}+a}\)