Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m+1\right)x-y=m+1\\x+\left(m-1\right)y=2\end{matrix}\right.\)
Tìm m để hệ pt có nghiệm duy nhất (x;y) thỏa mãn x+y đạt GTNN
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{matrix}\right.\)
Tìm m để hệ phương trình có nghiệm duy nhất thỏa mãn x+y=2
giải hệ pt:
\(\left\{{}\begin{matrix}x^2+xy=3x-y\\x^4+3x^2y-5x^2+y^2=0\end{matrix}\right.\)
Giải pt và hệ pt:
a)\(\sqrt{5x+1}-\sqrt{4-x}+2x^2-5x+6=0\)
b)\(\left\{{}\begin{matrix}\sqrt{2x+1}+\sqrt{2y+1}=\frac{\left(x-y\right)^2}{2}\\\left(x+y\right)\left(x+2y\right)+3x+2y=4\end{matrix}\right.\)
a) \(\left\{{}\begin{matrix}2x+5y=3\\3x-2y=-8\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+3y=5\\2x-5y=-1\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}3x-4y=18\\2x+y=1\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}x-2y+z=12\\2x-y+3z=18\\-3x+3y+3z=-9\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x-2y+4z=13\\y-3z=-7\\7z=14\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}2x+y+3z=2\\-x+4y-6z=5\\5x-y+3z=-5\end{matrix}\right.\)
1.Giải pt:\(\left\{{}\begin{matrix}5\left|x-3\right|+\frac{12}{x+y}=\frac{21}{2}\\_{ }\left|3-x\right|+\frac{1}{x+y}=\frac{7}{4}\end{matrix}\right.\)
2.Cho pt:\(x^2-2mx+3m+9=0\) (m là tham số)
Tìm m để pt có 2 nghiệm phân biệt \(x_1,x_2\) sao cho:\(\left(x_1^2-2mx_1+3\right)\left(x_2^2-2mx_2+9\right)=27\)
Tìm x,y thỏa mãn \(\left\{{}\begin{matrix}\left(x+\sqrt{2015+x^2}\right)\left(y+\sqrt{2015+x^2}\right)=2015\\3x^2+8y^2-12xy=23\end{matrix}\right.\)
Giải các hệ phương trình sau:
a, \(\left\{{}\begin{matrix}5x+3y=8xy\\3x+2y=5xy\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}-x+y=xy\\4x+3y=5xy\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}2x-y=5\\\left(x+y+2\right)\left(x+2y-5\right)=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}(m+1)x+my=2m-1\\mx-y=m^2-2\end{matrix}\right.\)
chứng minh ∀m luôn có nghiệm duy nhất . tìm m sao cho P xy+x+2y