\(\left(x^2+x+8\right)\left(20-x^2-x\right)\)
\(=-\left(x^2+x+8\right)\left(x^2+x-20\right)\)
\(=-\left(x+5\right)\left(x-4\right)\left(x^2+x+8\right)\)
\(\left(x^2+x+8\right)\left(20-x^2-x\right)\)
\(=-\left(x^2+x+8\right)\left(x^2+x-20\right)\)
\(=-\left(x+5\right)\left(x-4\right)\left(x^2+x+8\right)\)
Giaỉ các phương trình sau:
a) \(\left(x^2+11x+12\right)\left(x^2+9x+20\right)\left(x^2+13x+42\right)=36\left(x^2+11x+30\right)\left(x^2+11x+31\right)\)
b) \(20\left(\frac{x-2}{x+1}\right)^2-5\left(\frac{x+2}{x-1}\right)^2+48\cdot\frac{x^2-4}{x^2-1}=0\)
Bài 1 : Tính
\(a,A=1^2-2^2+3^2-4^2+...-2004^2+2005^2\)
\(b,B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(c,R\left(x\right)=x^4-17x^3+17x^2-17x+20\) với x=16
\(d,S\left(x\right)=x^{10}-13x^9+13x^8-13x^7+...+13x^2-13x+10\) với x=12
Chứng minh biểu thức sau không phụ thuộc vào giá trị của biến :
\(A=x.\left(5x-3\right)-x^2.\left(x-1\right)+x.\left(x^2-6x\right)-10+3x+x.\left(x^2+x+1\right)-x^2.\left(x+1\right)-x+5\)
\(B=3.\left(2x-1\right)-5.\left(x-3\right)+6.\left(3x-4\right)-19x+x.\left(3x+12\right)-\left(7x-20\right)+x^2.\left(2x-3\right)-x.\left(2x^2+5\right)\)
\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
Tính: \(\left(x-1\right).\left(x+1\right).\left(x^2+1\right).\left(x^4+1\right).\left(x^8+1\right).\left(x^{16}+1\right)\)
Giải các phương trình sau
a) \(\left(2x-2\right)^3=\left(x+1\right)^2+3\left(x-2\right)\left(x+5\right)\)
b) \(\left(x-1\right)^2+\left(x+3\right)^2=2\left(x+2\right)+\left(x+1\right)+38\)
c) \(\left(x+2\right)^3-\left(x-2\right)^3=12x\left(x-2\right)-8\)
Chứng minh:
a) \(\left(x^{50}+x^{10}+1\right)⋮\left(x^{20}+x^{10}+1\right)\)
b) \(\left(x^{10}-10x+9\right)⋮\left(x^2+1\right)\)
c) \(\left(x+1\right)^{4n+2}+\left(x-1\right)^{4n+2}⋮\left(x^2+1\right)\)
Tìm số nguyên x sao cho: \(\left(x^2-5\right)\left(x^2-10\right)\left(x^2-15\right)\left(x^2-20\right)< 0\)
Giải phương trình:\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x+\dfrac{1}{x}\right)^2\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)