1. Tính:
\(\sqrt{\dfrac{x-1+\sqrt{2x-3}}{x+2-\sqrt{2x+3}}}\)
2. Chứng minh:
a) \(\dfrac{\left(3\sqrt{xy}-6y.2x\sqrt{y}+4y\sqrt{x}\right)\left(3\sqrt{y}+2\sqrt{xy}\right)}{y\left(\sqrt{x}-2\sqrt{y}\right)\left(y-4x\right)}=1\)
b) \(\left(\sqrt{x}-\sqrt{y}-\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{y}{\sqrt{x}-\sqrt{y}}-\dfrac{2\sqrt{xy}}{xy}\right)=\sqrt{x}+\sqrt{y}\)
Tìm x bt:
\(\sqrt{x^2+2x+1}\) = -x
Rút gọn:
a, \(\sqrt{\left(4-\sqrt{17}\right)}^2\) - \(\sqrt{17}\)
b, \(\sqrt{\left(5-2\sqrt{3}\right)^2}\) - \(2\sqrt{3}\)
Giải phương trình:
a) \(\sqrt{x+3}+\sqrt{6-x}-\sqrt{\left(x+3\right)\left(6-x\right)}=3\)
b) \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x+3\right)}=4-2x\)
GIẢI PHƯƠNG TRÌNH
1. \(16x-13\sqrt{x-1}=9\sqrt{x+1}.\)
2. \(x^2-1=2x\sqrt{x^2-2x}\)
3. \(\left(x+3\right).\sqrt{\left(4-x\right)\left(12+x\right)}=28-x\)
4. \(x+4\sqrt{x+3}+2\sqrt{3-2x}=11\)
Cho biểu thức:
\(M=\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right)\)\(:\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
a/ Rút gọn M
b/ Tính M khi \(x=\frac{1}{2}\left(3+2\sqrt{2}\right)\)
1. Rút gọn \(A=\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}\)
2. Tính \(B=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
3.Tính \(C=\frac{\sqrt{3-\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\cdot\left(3+\sqrt{5}\right)}{\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}}\)
a,\(\left(4.\sqrt{x-1}-7\right).\left(2-\sqrt{x-1}\right)=5-4x\)
b,\(\frac{2}{5}.\left(\sqrt{2x+1}+5\right)=\frac{1}{4}.\left(\sqrt{2x+1}-1\right)\)
mn ơi giúp mik vs :((
giải hệ pt sau
\(\left\{{}\begin{matrix}y^3+\sqrt{8x^4-2y}=2\left(2x^4+3\right)\\\sqrt{2x^2+x+y}+2\sqrt{x+2y}=\sqrt{9x-2x^2+19y}\end{matrix}\right.\)
giải pt: \(\sqrt{\left(2x^2+x+9\right)}+\sqrt{\left(2x^2-x+1\right)}=x+4\)