cho hàm số \(y=\left(1+m\right)x^2-2\left(m-1\right)+m-3\) \(\left(P_m\right)\). Chứng minh \(\left(P_m\right)\) luôn đi qua 1 điểm cố định. Tìm điểm cố định đó
Cho các số thực không âm \(x_1,x_2,x_3.....x_9\) thỏa mãn \(\left\{{}\begin{matrix}x_1+x_2+x_3+...+x_9=10\\x_1+2x_2+3x_3+...+9x_9=18\end{matrix}\right.\)
Chứng minh rằng \(1.19x_1+2.18x_2+3.17x_3+...+9.11x_9\ge270\)
giúp :)
21. cho hàm số \(y=\left(1+m\right)x^2-2\left(m-1\right)x+m-3\) \(\left(P_m\right)\). chứng tỏ rằng \(\left(P_m\right)\) luôn đi qua 1 điểm cố định và tìm tọa độ cố định đó
Cho hàm số
\(y=f\left(x\right)=\sqrt{2+x}-\sqrt{2-x}\)
Chứng minh f là hàm số đồng biến trên [ -2 ;2]
Cho \(x^2-mx+m-2=0\left(1\right)\)với m là tham số .
a, Chứng minh (1) luôn có hai nghiệm phân biệt với mọi giá trị của m.
b, Gọi x1, x2 là các nghiệm của phương trình(1) . Tìm m để biểu thức B=\(2\left(x_1^2+x_2^2\right)-x_1x_2\) đạt giá trị nhỏ nhất.
Cho \(\left\{{}\begin{matrix}x,y,z\ge0\\x+y+z=1\end{matrix}\right.\). Chứng minh \(x^2y+y^2z+z^2x\le\frac{4}{27}\)
Cho x>0 , y>0. Tìm giá trị nhỏ nhất của biểu thức
A= \(3\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-8\left(\frac{x}{y}+\frac{y}{x}\right)+10\)
Cho p là số nguyên tố bất kì . Chứng minh \(p^{p+1}+\left(p+1\right)^p\) không phải là số chính phương
Chứng minh rằng với \(\forall m\le1\) thì \(x^2-2\left(3m-1\right)x+m+3\ge0\) với \(\forall x\in\) [1;+\(\infty\))