Gọi I(a;b) là tâm đường tròn (C). Do (C) tiếp xúc với các trục tọa độ nên |a|=|b|.
Lại có C đi qua M(4;2) nên a,b>0. Khi đó I(a;a).
Pt (C) có dạng (C):(x−a)2+(y−a)2=a2
Thay x=4; y=2 vào rồi giải ra a.
=> đpcm.
Gọi I(a;b) là tâm đường tròn (C). Do (C) tiếp xúc với các trục tọa độ nên |a|=|b|.
Lại có C đi qua M(4;2) nên a,b>0. Khi đó I(a;a).
Pt (C) có dạng (C):(x−a)2+(y−a)2=a2
Thay x=4; y=2 vào rồi giải ra a.
=> đpcm.
Lập phương trình đường tròn tiếp xúc với hai trục tọa độ Ox, Oy và đi qua điểm \(M\left(2;1\right)\) ?
trong mặt phẳng Oxy, cho hai đường tròn (C) : \(\left(x-1\right)^2+\left(y-1\right)^2=1\). Lập phương trình đường tròn (C') tiếp xúc với 2 trục tọa độ và tiếp xúc ngoài với (C)
Lập phương trình đường tròn tiếp xúc với hai trục tọa độ Ox, Oy và đi qua điểm M(2 ; 1)
Trong mặt phẳng Oxy, hãy lập phương trình của đường tròn (C) có tâm điểm \(\left(2;3\right)\) và thỏa mãn điều kiện sau :
a) (C) có bán kính là 5
b (C) đi qua gốc tọa độ
c) (C) tiếp xúc với trục Ox
d) (C) tiếp xúc với trục Oy
e) (C) tiếp xúc với đường thẳng \(\Delta:4x+3y-12=0\)
Trong mặt phẳng tọa độ Oxy cho 2 điểm A( 1;2) B (3;4) và đường thẳng (d): 3x+y-3=0
a) gọi (C1) (C2) là 2 đường tròn cùng đi qua qua 2 điểm A, B và tiếp xúc với (O). Lập phương trình của 2 đường tròn trên
b) Tìm tọa độ của điểm M trên (d) sao cho từ đó vẽ được 1 tiếp tuyến chung (d) # (d) của đường tròn (C1) và (C2)
Lập phương trình của đường tròn tiếp xúc với các trục tọa độ và có tâm ở trên đường thẳng d : 4x – 2y – 8 = 0
Lập phương trình của đường tròn (C) đi qua hai điểm \(A\left(1;2\right);B\left(3;4\right)\) và tiếp xúc với đường thẳng \(\Delta:3x+y-3=0\)
Lập phương trình của đường tròn tiếp xúc với các trục tọa độ và có tâm ở trên đường thẳng \(4x-2y-8=0\) ?
Cho đường tròn C) có phương trình :
a) Tìm tọa độ tâm và bán kính của (C)
b) Viết phương trình tiếp tuyến với (C) đi qua điểm A\(\left(-1;0\right)\)
c) Viết phương trình tiếp tuyến với (C) vuông góc với đường thẳng \(3x-4y+5=0\)