f: \(=\dfrac{15\left(x-y-z\right)^7}{-5\left(x-y-z\right)^5}=-3\left(x-y-z\right)^2\)
h: \(=\dfrac{\left(x+2\right)^3}{\left(x+2\right)^2}=x+2\)
f: \(=\dfrac{15\left(x-y-z\right)^7}{-5\left(x-y-z\right)^5}=-3\left(x-y-z\right)^2\)
h: \(=\dfrac{\left(x+2\right)^3}{\left(x+2\right)^2}=x+2\)
Tìm x:
a) \(3x\left(3x-8\right)-9x^2+8=0\)
b)\(6x-15-x\left(5-2x\right)=0\)
c) \(x^3-16x=0\)
d) \(2x^2+3x-5=0\)
e) \(3x^2-x\left(3x-6\right)=36\)
f) \(\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)=17\)
g) \(\left(x-4\right)^2-x\left(x+6\right)=9\)
h) \(4x\left(x-1000\right)-x+1000=0\)
i) \(x^2-36=0\)
j) \(x^2y-2+x+x^2-2y+xy=0\)
k) \(x\left(x+1\right)-\left(x-1\right).\left(2x-3\right)=0\)
l) \(3x^3-27x=0\)
a) \(3^4.5^4-\left(15^2+1\right)\left(15^2-1\right)\)
b) \(x^4-12x^3+12x^2-12x+111\) tại x=11
c) \(\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)
d) \(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
Làm tính chia :
a) \(\left(6x^3-7x^2-x+2\right):\left(2x+1\right)\)
b) \(\left(x^4-x^3+x^2+3x\right):\left(x^2-2x+3\right)\)
c) \(\left(x^2-y^2+6x+9\right):\left(x+y+3\right)\)
Làm tính chia :
a) \(\left(2x^3+5x^2-2x+3\right):\left(2x^2-x+1\right)\)
b) \(\left(2x^3-5x^2+6x-15\right):\left(2x-5\right)\)
c) \(\left(x^4-x-14\right):\left(x-2\right)\)
Thực hiện phép tính
a,\(\left(x-y\right)\left(y^2+y+1\right)+\left(\dfrac{1}{3}x^2y-y\right)\left(2x+y^2\right)\)
b,\(2x^2\left(x-2\right)+3x\left(x^2-x-2\right)-5\left(3-x^2\right)\)
c,\(\left(x-1\right)\left(x-3\right)-\left(4-x\right)\left(2x-1\right)-3x^3+2x-5\)
CM các biểu thức sau không phụ thuộc vào biến x,y
a) \(\left(2x-5\right)\times\left(2x+5\right)-\left(2x-3\right)^2-12x\)
b) \(\left(2y-1\right)^3-2y\left(2y-3\right)^2-6y\left(2y-2\right)\)
c) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(20+x^3\right)\)
d) \(3y\left(-3y-2\right)^2-\left(3y-1\right)\left(9y^2+3y+1\right)-\left(-6y-1\right)^2\)
Bài 1: Phân tích đa thức sau thành nhân tử:
a) \(x^3-4x^2-12x+27\)
b) \(25\left(x-y\right)^2-16\left(x+y\right)^2\)
c) \(x^4+x^3+x+1\)
d) \(x\left(x+1\right)^2+x\left(x-5\right)-5\left(x+1\right)^2\)
e) \(x^2-x-6\)
f)\(x^3-19x-30\)
Bài 2: Tìm x, biết:
a) \(\left(x+2\right)^2-\left(x-2\right)\left(x-2\right)=0\)
b) \(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
c) \(4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
d) \(\left(x-4\right)^2-\left(x-2\right)\left(x+2\right)=6\)
e) \(9\left(x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)
Mọi người ơi giúp mk vs mai mk phải nộp rùi! Thanks mọi người nhìu nha!
Tìm x, biết :
a) \(\dfrac{2}{3}x\left(x^2-4\right)=0\)
b) \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
c) \(\left(x^2-y^2+6x+9\right):\left(x+y+3\right)\)
Phân tích đa thức thành nhân tử :
a ) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2-4c^2\)
b ) \(x^2-y^2+2x-4y-3\)
c ) \(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)\)
d ) \(x^4+4a^4\)
e ) \(x^5+x+1\)
f ) \(x^4+2013x^2+2012x+2013\)
I : C/m các biểu thức sau không phụ thuộc vào x ; y
a) 2\(\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)với x + y =1
b) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
c) \(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)