cho f(x) dương liên tục trên [0;1] f(0)=1. Biết \(3\int_0^1\left[f'\left(x\right)\left[f\left(x\right)\right]^2+\frac{1}{9}\right]dx\le2\int_0^1\sqrt{f'\left(x\right)}f\left(x\right)dx\) . Tính \(\int_0^1\left[f\left(x\right)\right]^3dx\)
Câu 1. Cho hàm số chẵn y=f (x) liên tục trên R và \(\int\limits^1_{-1}\dfrac{f\left(2x\right)}{1+2^x}dx=8\).Tính \(\int_0^2f\left(x\right)dx\)
Câu 2:Cho hàm số y=f (x) có đạo hàm và liên tục trên [0;1]và thỏa f(0)=1.\(\int_0^1\left[f'\left(x\right)\left[f^2\left(x\right)\right]+1\right]dx=2\int_0^1\sqrt{f'\left(x\right)}f\left(x\right)dx\).Tính\(\int_0^1\left[f^3\left(x\right)\right]dx\).
cho hàm số y=f(x) liên tục trên [0;π/2] thỏa \(\int_0^{\frac{\pi}{2}}f^2\left(x\right)dx=3\pi\) , \(\int_0^{\pi}\left(\sin x-x\right)f'\left(\frac{x}{2}\right)dx=6\pi\) ; \(f\left(\frac{\pi}{2}\right)=0\) Tính \(\int_0^{\frac{\pi}{2}}\left(f''\left(x\right)\right)^3dx\)
giúp em với ạ.
cho \(\int_0^1\frac{x^3+2x^2+3}{x+2}dx=\frac{1}{a}+bln\frac{3}{2}\left(a,b>0\right)TínhS=a^2+b^2\)
Cho f(x) liên tục trên R thỏa mãn \(\int_0^{\frac{1}{2}}f\left(\sqrt{1-2x^2}\right)dx\) = \(\frac{7}{6}\) và f (\(\frac{1}{\sqrt{2}}\)) =1. Tính I = \(\int_0^{\frac{\Pi}{4}}f'\left(cosx\right)sin^2xdx\)
A. \(\frac{1}{2}\) B.\(\frac{\sqrt{2}}{3}\) C. \(\frac{2\sqrt{2}}{3}\) D. 1
\(\int_0^1\)\(\dfrac{x-2}{\left(x+1\right)^2}dx\)
\(\int_0^{\sqrt{7}}\dfrac{x^3}{\sqrt[3]{x^2+1}}dx\)
\(\int_1^6\dfrac{\sqrt{x+3}+1}{x+2}dx\)
Tìm \(\int_0^1\dfrac{x^2e^x}{\left(x+1\right)^2}dx\)
a\(\int_0^1\dfrac{dx}{x^4+4x^2+3}\)
b \(\int\dfrac{x^2-1}{x^4+1}\)
c\(\int\dfrac{dx}{x\left(x^3+1\right)}\)
d \(\int_0^1\dfrac{xdx}{x^4+x^2+1}\)