\(\int_0^1(2-\dfrac{2}{x+1})dx\)
\(=\int_0^12dx-\int_0^1\dfrac{2}{x+1}dx\)
\(=2x|_0^1-\int_0^1\dfrac{2}{x+1}d(x+1)\)
\(=2x|_0^1-2.\ln(x+1)|_0^1\)
\(=2-2\ln 2\)
\(\int_0^1(2-\dfrac{2}{x+1})dx\)
\(=\int_0^12dx-\int_0^1\dfrac{2}{x+1}dx\)
\(=2x|_0^1-\int_0^1\dfrac{2}{x+1}d(x+1)\)
\(=2x|_0^1-2.\ln(x+1)|_0^1\)
\(=2-2\ln 2\)
Tinh \(\int\frac{x}{2-x^2}\)dx
Chỉ hộ minh muốn tính nguyên hàm mà bậc tử nhỏ hơn bậc mẫu ta thương làm thế nào
Tính tích phân sau: \(\int_0^1\frac{x^4-2x^3-4x^2+x-2}{x^2-2x-3}dx\)
\(\int_0^1\)\(\dfrac{2x^3-3x^2+x-4}{x^2+2x+1}dx\)
Tính \(\int_0^4\frac{dx}{\sqrt{2x+1}+1}\)
cho \(\int_0^1\frac{x^3+2x^2+3}{x+2}dx=\frac{1}{a}+bln\frac{3}{2}\left(a,b>0\right)TínhS=a^2+b^2\)
cho f(x) dương liên tục trên [0;1] f(0)=1. Biết \(3\int_0^1\left[f'\left(x\right)\left[f\left(x\right)\right]^2+\frac{1}{9}\right]dx\le2\int_0^1\sqrt{f'\left(x\right)}f\left(x\right)dx\) . Tính \(\int_0^1\left[f\left(x\right)\right]^3dx\)
\(\int_0^{ln2}\frac{e^{2x}+3e^x}{e^{2x}+3e^x+2}dx\)
\(\int_0^1\left(x+3e^{2x}\right).e^{2x}dx\)
\(\int_0^1\left(X^2.SINX^3+\frac{\sqrt{X}}{1+X}\right)dx\)