a, \(\)\(\left(x+6\right)^2=x^2+12x+36\)
b, \(\left(2x-5\right)^2=4x^2-20x+25\)
c, \(\left(2x+5\right)\left(5-2x\right)=25-4x^2\)
d, \(\left(5-\sqrt{7}\right)^2=25-2.5.\sqrt{7}+\left(\sqrt{7}\right)^2\)
a, \(\)\(\left(x+6\right)^2=x^2+12x+36\)
b, \(\left(2x-5\right)^2=4x^2-20x+25\)
c, \(\left(2x+5\right)\left(5-2x\right)=25-4x^2\)
d, \(\left(5-\sqrt{7}\right)^2=25-2.5.\sqrt{7}+\left(\sqrt{7}\right)^2\)
giải pt sau
a)\(\left(x-2\right)\left(x-3\right)+2x=\left(x-2\right)^2-2\)
b) \(\left(x-1\right)^2+3x\left(x-1\right)+7=\left(2x-1\right)^2+5\left(x-3\right)\)
c)\(5\left(x^1-2x-1\right)+2\left(3x-2\right)=5\left(x+1\right)^2\)
d)\(\left(x-1\right)\left(x^2+x+1\right)-2x=x\left(x-1\right)\left(x+1\right)\)
Chứng minh biểu thức sau không phụ thuộc vào giá trị của biến :
\(A=x.\left(5x-3\right)-x^2.\left(x-1\right)+x.\left(x^2-6x\right)-10+3x+x.\left(x^2+x+1\right)-x^2.\left(x+1\right)-x+5\)
\(B=3.\left(2x-1\right)-5.\left(x-3\right)+6.\left(3x-4\right)-19x+x.\left(3x+12\right)-\left(7x-20\right)+x^2.\left(2x-3\right)-x.\left(2x^2+5\right)\)
Giải các phương trình sau:
1. \(a,\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{8}{2x-6}\)
\(b,\dfrac{1}{x-2}+\dfrac{5}{x+1}=\dfrac{3}{2-x}\)
\(c,\dfrac{3x}{x-2}-\dfrac{x}{x-5}=\dfrac{3x}{\left(x-2\right)\left(5-x\right)}\)
2. \(a,\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
\(b,2x^2-6x+1\)
thực hiện phép tính:
a,\(\left(2x^3-x^2+5x\right):x\)
b,\(\left(3x^4-2x^3+x^2\right):\left(-2x\right)\)
c,\(\left(-2x^5+3x^2-4x^3\right):2x^2\)
d,\(\left(x^3-2x^2y+3xy^2\right):\left(\dfrac{-1}{2}x\right)\)
e,\(\left(3\left(x-y\right)^5-2\left(x-y\right)^4+3\left(x-y\right)^2\right):5\left(x-y\right)^2\)
bài 1: khoanh tròn vào chỗ sai trong các bài giải sau và sửa lại cho đúng
a) \(\left(2x+5\right)\left(5-2x\right)=2x^2-5^2\)
b) \(A=\left(x-5\right)^2+\left(2x+1\right)^2-2\left(2x^2+8.5\right)\)
\(A=\left(x^2-10x+25\right)+\left(2x^2+4x+1\right)-4x-17\)
\(A=x^2-6x+9\)
c) \(4x^2=36x-81\)
\(\Leftrightarrow4x^2-36=-81\)
\(\Leftrightarrow4x^2-36+81=0\)
\(\Leftrightarrow\left(2x-9\right)^2=0\)
\(\Leftrightarrow2x-9=0\)
\(\Leftrightarrow2x=9\)
\(\Leftrightarrow x=\frac{9}{2}\)
vậy S={4,5}
d)\(\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
\(\Leftrightarrow x^2-5-x-3\)
\(\Leftrightarrow x^2-5-x+3=0\)
\(\Leftrightarrow x^2-2-x=0\)
\(\Leftrightarrow x^2-2x+x-2=0\)
\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\) x=0 hoặc x=2
vậy S={0;2}
a) rút gọn biểu thức: \(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)
b) tìm x biết: \(x\left(3x+2\right)+\left(x+1\right)^2-\left(2x-5\right)\left(2x+5\right)=12\)
giải phương trình sau :
a) 5-(x-6) = 4(3-2x) b) 2x(x+2)2-8x2 = 2(x-2)(x2+4)
c) 7-(2x+4) = -(x+4) d) (x+1)(2x-3) = (2x-1)(x+5
f) \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
e) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
Bài 3: Giải các phương trình sau bằng cách đưa về dạng ax+b =0 :
a) \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\)
b) \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{5}\)
c) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x-1\right)}{7}-5\)
d) \(14\frac{1}{2}-\frac{2\left(x+3\right)}{5}=\frac{3x}{2}-\frac{2\left(x-7\right)}{3}\)
khai triển hằng đẳng thức sau
a.\(\left(x-3\right)^3\)
b.\(\left(2x-3\right)^3\)
c.\(\left(x-\frac{1}{2}\right)^3\)
d.\(\left(x^2-2\right)^3\)
e.\(\left(2x-3y\right)^3\)
f.\(\left(\frac{1}{2}x-y^2\right)^3\)