cotx=cot 2/3pi
=>x=2pi/3+kpi
cotx=cot 2/3pi
=>x=2pi/3+kpi
phương trình \(\dfrac{tanx}{1-tan^2x}\)=\(\dfrac{1}{2}\)cot(x+\(\dfrac{\pi}{4}\)) có nghiệm là
a)vẽ đồ thị hàm số \(y=\tan x\) rồi chỉ ra trên đồ thị đó các điểm có hoành độ thuộc khoảng \(\left(-\pi;\pi\right)\) là nghiệm của mõi phương trình sau :
1) \(\tan x=-1\) ; 2) \(\tan x=0\)
b) cũng câu hỏi tương tự cho hàm số \(y=\cot x\) đối với mỗi phương trình sau : 1) \(\cot x=\frac{\sqrt{3}}{3}\) ; 2) \(\cot x=1\)
Mấy bạnn giải chii tiết raa giúp mik với nhaa Câu 1: nghiệm dương nhỏ nhất của pt tan x=tan (6π/5) A. x=π/5 B. x=6π/5 C. x=6/5 D. x=6π Câu 2: tìm nghiệm thuộc đoạn [0;π] của pt cot 2x=cot(π/2-x) A. 2 B. 3 C.1 D.4 Câu 3: tìm tổng các nghiệm thuộc khoảng (-π/2;π/2) của pt 4sin²2x-1=0 A.0 B. π/6 C. π/3 D. π Câu 4: tìm tổng các nghiệm của pt cos(x+π/4)=1/2 trong khoảng (-π;π) A. π/2 B. -π/2 C. -3π/2 D. π/4
Giải phương trình
\(\sin x+2\cos x+2\tan x+4\cot x+6=0\)
Bài4: Giải phương trình a/ cos2x - sin7x = 0. b/ tan( 15° - x ) = cot x c/ tanx X tan2x = 1
Bài 1: Tìm m để phương trình cosx=2m có một nghiệm duy nhất thuộc \(\left[\frac{-\pi}{2};\frac{\pi}{3}\right]\)
Bài 2: Tìm số nghiệm thuộc \(\left(-\pi;\pi\right)\) của phương trình \(cot\left(3x-\frac{\pi}{3}\right)=cot\left(x+\frac{\pi}{4}\right)\)
Bài 3: Tất cả các nghiệm của phương trình \(sin\left(2x+\frac{\pi}{3}\right)=\frac{1}{2}\) được biểu diễn bởi bao nhiêu điểm trên đường tròn lượng giác
Giải PT:
a1. \(\cot\left(2x+\dfrac{\pi}{3}\right)\)=\(-\sqrt{3}\)
a2. \(\cot\left(3x-10^{\cdot}\right)\cot2x=1\)
a3. \(\cot\left(\dfrac{\pi}{4}-2x\right)-\tan x=0\)
a4. \(\cot\left(30^{\cdot}+3x\right)+\tan\left(x-10^{\cdot}\right)=0\)
tìm các nghiệm của phương trình sau trong khoảng đã cho
a:\(2sin2x+1=0với0< x< \pi\)
b:\(cot\left(x-\frac{\pi}{5}\right)=\sqrt{3}với-2\pi< x< \pi\)
giải các phương trình sau : a) \(\tan3x=\tan\frac{3\pi}{5}\) ; b) \(\tan\left(x-15^o\right)=5\) ; c) \(\tan\left(2x-1\right)=\sqrt{3}\) ; d) \(\cot2x=\cot\left(-\frac{1}{3}\right)\) ; e) \(\cot\left(\frac{x}{4}+20^o\right)=-\sqrt{3}\) ; f) \(\cot3x=\tan\frac{2\pi}{5}\)