Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B có AD=3a, AB=BC=2a. Biết SA⊥(ABCD).
a) Tính khoảng cách từ C đến mặt phẳng (SAD).
b) Tính khoảng cách từ D đến mặt phẳng(SAC).
Cho hình chóp S.Abcd có đáy ABcd là hình thang vuông tại A va D, AB=2BC=2a, AD= 3a. Hình chiếu vuông góc H của S lên mặt phẳng (Abcd) là trung điểm của cạnh Ab. Tính theo a thể tích S.Abcd và khoảng cách từ A đến mặt phẳng (scd) biết Sd=acăn3
Cho hình chóp S.ABCD có tam giác SAB đều và nằm trong mặt phẳng vuông góc với (ABCD) , tứ giác ABCD là hình vuông cạnh a . Gọi H là trung điểm của AB . Tính khoảng cách từ điểm H đến mặt phẳng (SCD).
Cho hình chóp S.ABCD có tam giác SAB đều và nằm trong mặt phẳng vuông góc với (ABCD) , tứ giác ABCD là hình vuông cạnh a . Gọi H là trung điểm của AB . Tính khoảng cách từ điểm H đến mặt phẳng (SCD).
Cho hình chóp S.ABCD có có đáy là hình thoi cạnh a, góc ABC = 120 độ, SA vuông góc với (ABCD). Biết góc giữa hai mặt phẳng (SBC) và (SCD) bằng 60 độ. K là trung điểm của SC tính d(BK;AD)
Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a hai mặt phẳng SAB và SAD cùng vuông góc với mặt đáy gọi M lần lượt là trung điểm của AD tính khoảng cách giữa hai đường thẳng AB và SM biết SC = a căn 3
Cho hình lăng trụ ABC.A'B'C' có dayd là tam giác đều cạnh a, hình chiếu vuông góc của B' lên mặt phẳng đáy trùng với trung điểm H của cạnh AB, góc giữa mặt phẳng (BCC'B') và mặt phẳng đáy là 60°. Tính khoảng cách giữa hai đường thẳng AA' và BC