Hiện nay urani tự nhiên chứa hai đồng vị phóng xạ \(^{235}U\)và \(^{238}U\), với tỷ lệ số hạt \(^{235}U\) và số hạt \(^{238}U\) là \(\frac{7}{1000}\). Biết chu kì bán rã của \(^{235}U\) và \(^{238}U\) lần lượt là 7,00.108 năm và 4,50.109 năm. Cách đây bao nhiêu năm, urani tự nhiên có tỷ lệ số hạt \(^{235}U\)và số hạt \(^{238}U\)là \(\frac{3}{100}\) ?
A.2,74 tỉ năm.
B.2,22 tỉ năm.
C.1,74 tỉ năm.
D.3,15 tỉ năm.
Kí hiệu \(N_{01}\), \(N_{02}\) là số hạt ban đầu lần lượt của \(^{235}U\) và \(^{238}U\).
Hiện nay \(t_2\): \(\frac{N_{1}}{N_{2}}=\frac{N_{01}2^{-\frac{t_2}{T_1}}}{N_{02}2^{-\frac{t_2}{T_2}}} =\frac{7}{1000}.(1)\)
Thời điểm \(t_1\):
\(\frac{N_1}{N_2}= \frac{N_{01}2^{-\frac{t_1}{T_1}}}{N_{02}2^{-\frac{t_1}{T_2}}} = \frac{3}{100}.(2)\)
Chia (1) cho (2) => \(\frac{2^{-\frac{t_2}{T_1}}.2^{-\frac{t_1}{T_2}}}{2^{-\frac{t_1}{T_1}}.2^{-\frac{t_2}{T_2}}}= \frac{7.100}{3.1000}= \frac{7}{30}.\)
Áp dụng \(\frac{1}{2^{-x}} =2^x. \)
=> \(2^{(t_2-t_1)(\frac{1}{T_2}-\frac{1}{T_1})} = \frac{7}{30}.\)
=> \(t_2-t_1 = \frac{T_1T_2}{T_1-T_2}\ln_2 (7/30)=1,74.10^{9}\).(năm) \(= 1,74 \)(tỉ năm).
Như vậy cách hiện nay 1,74 tỉ năm thì trong urani tự nhiên có tỉ lệ số hạt thỏa mãn như bài cho.