Mẫu 1:
+) Số trung bình: \(\overline x = \frac{{0,1 + 0,3 + 0,5 + 0,5 + 0,3 + 0,7}}{6} = 0,4\)
+) Phương sai \({S^2} = \frac{1}{6}\left( {0,{1^2} + 0,{3^2} + 0,{5^2} + 0,{5^2} + 0,{3^2} + 0,{7^2}} \right) - 0,{4^2} \approx 0,0367\)
+) Độ lệch chuẩn \(S = \sqrt {{S^2}} \approx 0,19\)
Mẫu 2:
+) Số trung bình: \(\overline x = \frac{{1,1 + 1,3 + 1,5 + 1,5 + 1,3 + 1,7}}{6} = 1,4\)
+) Phương sai \({S^2} = \frac{1}{6}\left( {1,{1^2} + 1,{3^2} + 1,{5^2} + 1,{5^2} + 1,{3^2} + 1,{7^2}} \right) - 1,{4^2} \approx 0,0367\)
+) Độ lệch chuẩn \(S = \sqrt {{S^2}} \approx 0,19\)
Mẫu 3:
+) Số trung bình: \(\overline x = \frac{{1 + 3 + 5 + 5 + 3 + 7}}{6} = 4\)
+) Phương sai \({S^2} = \frac{1}{6}\left( {{1^2} + {3^2} + {5^2} + {5^2} + {3^2} + {7^2}} \right) - {4^2} \approx 3,67\)
+) Độ lệch chuẩn \(S = \sqrt {{S^2}} \approx 1,9\)
Kết luận:
Số liệu ở mẫu 2 hơn số liệu ở mẫu 1 là 1 đơn vị, số trung bình của mẫu 2 hơn số trung bình mẫu 1 là 1 đơn vị, còn phương sai và độ lệch chuẩn là như nhau.
Số liệu ở mẫu 3 gấp 10 lần số liệu mẫu 1, số trung bình, phương sai và độ lệch chuẩn của mẫu 3 lần lượt gấp 10 lần, 100 lần và 10 lần mẫu 1.