Xét mẫu số liệu đã sắp xếp là:
\(3;{\rm{ }}3;{\rm{ }}9;{\rm{ }}9;{\rm{ }}10;{\rm{ }}10;{\rm{ }}12;{\rm{ }}12;\;\;37.\)
Cỡ mẫu là \(n = 9\) là số lẻ nên giá trị tứ phân vị thứ hai là: \({Q_2} = 10.\)
Tứ phân vị thứ nhất là trung vị của mẫu: \(3;{\rm{ }}3;{\rm{ }}9;{\rm{ }}9.\). Do đó \({Q_1} = 6.\)
Tứ phân vị thứ ba là trung vị của mẫu: \(10;{\rm{ }}12;{\rm{ }}12;\;\;37.\). Do đó \({Q_3} = 12\)
Khoảng tứ phân vị của mẫu là: \({\Delta _Q} = 12 - 6 = 6\)
Giá trị ngoại lệ x thỏa mãn \(x > 12 + 1,5.6 = 21\) hoặc \(x < 6 - 1,5.6 = - 3\).
Vậy giá trị ngoại lệ của mẫu số liệu đó là \(37\)