Ta có \(\frac{5}{6} = 0,8(3)\) = \(0,8333....\)
Vì:\(0,834 > 0,8333... \Rightarrow 0,834 > \frac{5}{6}\)
Ta có \(\frac{5}{6} = 0,8(3)\) = \(0,8333....\)
Vì:\(0,834 > 0,8333... \Rightarrow 0,834 > \frac{5}{6}\)
Hãy biểu diễn các số hữu tỉ sau đây dưới dạng số thập phân: \(\frac{{12}}{{25}};\frac{{27}}{2};\frac{{10}}{9}\)
a) Hãy biểu diễn các số hữu tỉ sau đây dưới dạng số thập phân:
\(\frac{{15}}{8};\,\,\,\frac{{ - 99}}{{20}};\,\,\,\frac{{40}}{9};\,\,\, - \frac{{44}}{7}\)
b) Trong các số thập phân vừa tính được, hãy chỉ ra các số thập phân vô hạn tuần hoàn.
Tìm số hữu tỉ trong các số sau:
\(12;\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{2}{3};\,\,\,\,\,\,3,\left( {14} \right);\,\,\,\,\,\,\,0,123;\,\,\,\,\,\,\,\,\sqrt 3 \)
Hãy thực hiện các phép chia sau đây:
\(3:2 = ?\,\,\,\,\,\,\,\,\,\,\,37:25 = ?\,\,\,\,\,\,\,\,5:3 = ?\,\,\,\,\,\,1:9 = ?\)
b) Dùng kết quả trên để viết các số \(\frac{3}{2};\frac{{37}}{{25}};\frac{5}{3};\frac{1}{9}\) dưới dạng số thập phân.
Hoàn thành các phát biểu sau:
a) Số a=5,123 là một số thập phân hữu hạn nên a là số .?.
b) Số b = 6,15555... = 6,1(5) là một số thập phân vô hạn tuần hoàn nên b là số .?.
c) Người ta chứng minh được \(\pi= 3,14159265...\) là một số thập phân vô hạn không tuần hoàn. Vậy \(\pi\) là số ?.
d) Cho biết số c=2,23606... là một số thập phân vô hạn không tuần hoàn. Vậy c là số .?.
Cho hai hình vuông ABCD và AMBN như hình bên. Cho biết cạnh AM=1 dm.
- Em hãy cho biết diện tích hình vuông ABCD gấp mấy lần diện tích hình vuông AMBN.
- Tính diện tích hình vuông ABCD.
- Hãy biểu diễn diện tích hình vuông ABCD theo độ dài đoạn AB.
Dùng máy tính cầm tay để tính các căn bậc hai số học sau (làm tròn đến 3 chữ số thập phân).
\(a)\sqrt {2250} ;\,\,\,\,\,\,b)\sqrt {12} ;\,\,\,\,\,\,\,c)\sqrt 5 \,\,\,\,\,\,\,\,\,d)\sqrt {624} \)
Hãy thay dấu ? bằng các số thích hợp.
Viết các căn bậc hai số học của: 16; 7; 10; 36.