Ta có:
\(s'\left(r\right)=\left(\dfrac{1}{r^4}\right)'=-4\cdot r^{-5}=-\dfrac{4}{r^5}\)
Tốc độ thay đổi của S theo r khi \(r=0,8\) là:
\(S'\left(0,8\right)=-\dfrac{4}{0,8^5}\approx-12,21\)
Ta có:
\(s'\left(r\right)=\left(\dfrac{1}{r^4}\right)'=-4\cdot r^{-5}=-\dfrac{4}{r^5}\)
Tốc độ thay đổi của S theo r khi \(r=0,8\) là:
\(S'\left(0,8\right)=-\dfrac{4}{0,8^5}\approx-12,21\)
Hàm số \(R\left( v \right) = \frac{{6000}}{v}\) có thể được sử dụng để xác định nhịp tim \(R\) của một người mà tim của người đó có thể đây đi được \(6000ml\) máu trên mỗi phút và \(v{\rm{ }}ml\) máu trên mỗi nhịp đập (theo Bách khoa toàn thư Y học “Harrison's internal medicine 21st edition”). Tìm tốc độ thay đổi của nhịp tim khi lượng máu tim đẩy đi ở một nhịp là \(v = 80\).
Nhiệt độ cơ thể của một người trong thời gian bị bệnh được cho bởi công thức \(T\left( t \right) = - 0,1{t^2} + 1,2t + 98,6\), trong đó \(T\) là nhiệt độ (tính theo đơn vị đo nhiệt độ Fahrenheit) tại thời điểm \(t\) (tính theo ngày). Tìm tốc độ thay đổi của nhiệt độ ở thời điểm \(t = 1,5\).
(Nguồn: https://www.algebra.com/algebra/homework/Trigonometry-basics/Trigonometry-basics.faq.question.1111985.html)
Một vật chuyển động trên đường thẳng được xác định bởi công thức \(s\left( t \right) = 2{t^3} + 4t + 1\), trong đó \(t\) là thời gian tính bằng giây và \(s\) tính bằng mét.
Tính vận tốc và gia tốc của vật khi \(t = 1\).
Một viên soi rơi từ độ cao 44,1 m thì quãng đường rơi được biểu diễn bởi công thức \(s\left( t \right) = 4,9{t^2}\), trong đó \(t\) là thời gian tính bằng giây và \(s\) tính bằng mét. Tinh:
a) Vận tốc rơi của viên sỏi lúc \(t = 2\);
b) Vận tốc của viên sỏi khi chạm đất.
Hàm số \(y = \frac{1}{{x + 1}}\) có đạo hàm cấp hai tại \(x = 1\) là
A. \(y''\left( 1 \right) = \frac{1}{2}\).
B. \(y''\left( 1 \right) = - \frac{1}{4}\).
C. \(y''\left( 1 \right) = 4\).
D. \(y''\left( 1 \right) = \frac{1}{4}\).
Hàm số \(y = \frac{{x + 3}}{{x + 2}}\) có đạo hàm là
A. \(y' = \frac{1}{{{{\left( {x + 2} \right)}^2}}}\).
B. \(y' = \frac{5}{{{{\left( {x + 2} \right)}^2}}}\).
C. \(y' = \frac{{ - 1}}{{{{\left( {x + 2} \right)}^2}}}\).
D. \(y' = \frac{{ - 5}}{{{{\left( {x + 2} \right)}^2}}}\).
Tính đạo hàm của các hàm số sau:
a) \(y = 3{x^4} - 7{x^3} + 3{x^2} + 1\);
b) \(y = {\left( {{x^2} - x} \right)^3}\);
c) \(y = \frac{{4{\rm{x}} - 1}}{{2{\rm{x}} + 1}}\)
Dân số P (tính theo nghìn người) của một thành phố nhỏ được cho bởi công thức P (t) = \(\dfrac{500t}{t^2+9}\), trong đó t là thời gian được tính bằng năm. Tìm tốc độ tăng dân số tại thời điểm t = 12.
Tính đạo hàm của các hàm số sau:
a) \(y = \left( {{x^2} + 3x - 1} \right){e^x}\);
b) \(y = {x^3}{\log _2}x\).