Bài 1. Cho tam giác vuông ABC ( Â = 90) có AB = 9cm,AC = 12cm.Tia phân giác góc A cắt BC tại D .Từ D kẻ DE vuông góc với AC (E thuộc AC) .
a) Tính độ dài các đoạn thẳng BD,CD và DE.
b) Tính diện tích các tam giác ABD và ACD.
Cho \(\Delta\)ABC vuông tại A,Ah là đường cao,Bh=4cm,Ch=9cm.Gọi D,E lần lượt là hình chiếu của H trên Ab,Ac
1) Tính dộ dài DE
2)gọi I là tđ của BC,CM:AI vuông góc với DE
3) CM: góc ADE = góc ACB và góc AED= góc ABC
4) CM: \(AC^2\)=CH.CB
5) CM: AC.BD+AB.CE=AH.BC
Cho tam giác ABC, các đường cao BD và CE cắt nhau tại H, chứng minh :
a) AE x AB = AD x AC
b) Góc AED = góc ACB
c) Tính diện tích tam giác ABC biết AC = 6cm ; BC = 5cm ; CD = 3cm
d) BE x BA + CD x CA = BC2
Cho hình thang vuông ABCD có AB//CD và AB=12,CD=27,BD=18.Chứng minh góc DBC = 90 độ
Cho hình chữ nhật ABCD có AB = 6cm, BC = 8cm. Vẽ BH vuông góc với AC (H \(\in\) AC )
a) C/m: \(\Delta\)BHC \(\sim\) \(\Delta\)CDA
b) Tính diện tích \(\Delta\)BHC
c) Gọi M, B lần lượt là trung điểm của AH và BH, tia MN cắt BC tại E. Chứng minh \(\Delta\)CEH \(\sim\) \(\Delta\)CMB
Cho tam giác ABC, góc A = 90 độ, kẻ AH vuông góc BC tại H. Chứng minh:
\(AH^2=HB.HC\)
\(AB^2=HB.BC\)
\(AC^2=HC.BC\)
\(\dfrac{1}{AH^2}=\dfrac{1}{BA^2}+\dfrac{1}{AC^2}\)
cho tam giác ABC vuông tại A , AB=12cm , AC=16cm. Vẽ đường cao AH( H thuộc BC ) và tia phân giác của góc A cắt BC tại D a/ chứng minh tam giác HBA đồng dangj tam giác ABC b/ Tính độ dài cạnh BC c/ tính tỉ số diện tích của hai tam giác ABD và ACD d/ Tính độ dài các đoạn thẳng BD và CD
cho hình vuông ABCD , lấy điểm M trên cạnh BC, điểm N trên cạnh DC biết góc MAN = 45 độ . AM, AN cắt BD tại Q và P.
a) Chứng minh tam giác ABQ đồng dạng với tam giác PQM.
b) Kẻ AH vuông góc với MN . Chứng minh rằng AH có giá trị không đổi .
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc AB, HF vuông góc AC. Chứng minh rằng: a) Tam giác BHE đồng dạng tam giác BAH b) Tứ giác AEHF là hình chữ nhật c) AH bình = AF . AC d) CH bình = CF . CA e) Tam giác AEF đồng dạng tam giác ACB