Cho tam giác nhọn ABC, AB<AC. Kẻ AH vuông góc với BC (H ∈ BC). Gọi M là 1 điểm nằm giữa A và H, tia BM cắt AC ở D. Chứng minh rằng:
a) BM<CM
b) DM<DH
1. Tam giác ABC nhọn. AB< AC. AH vuông góc BC tại H. Lấy M thuộc AH. BM giao AC tại D. So sánh:
a) BM và CM.
b) DM và DH.
c) MB+MC và AB+AC.
2. Điểm D nằm trong tam giác ABC, AD= AB. Chứng minh AB<AC.
Cho tam giác nhọn ABC, AB nhỏ hơn AC. Kẻ AH vuông góc BC, M là 1 điểm nằm giữa A và H, tia BM cắt AC ở D. CMR: a, BM bé hơn CM b, DM bé hơn DH
Bài 1: Cho ABC nhọn có AB < AC và đường cao AH. Gọi M là điểm nằm giữa A và H (M khác A, H) , tia BM cắt AC tại K. a) Chứng minh rằng: BM < CM b) Chứng minh rằng: KM < KH
Cho ΔABC,AB<AC.Kẻ AH⊥BC(H∈BC)Lấy điểm M nằm giữa A và H. Tia BM cắt AC ở D. CMR:
a) BM < CM
b) DM < DH
Chỉ cần làm giúp mình phần b thôi
Cho ΔABC nhọn có AH ⊥ BC tại H a) Chứng minh AC > AH, AB > AH b) Chứng minh AH < 1/2.(AB + AC)
1. Cho △ABC. M là một điểm thuộc cạnh BC. Gọi E, F lần lượt là hình chiếu của B và C trên AM. Chứng minh rằng BE + CF < BC
2. Cho △ABC nhọn. Vẽ AD ⊥ BC, BE ⊥ AC, CF ⊥ AB.
a) Chứng minh AB + AC > 2AD
b) Chứng minh AB + AC + BC > AD + BE + CF
3. Cho △ABC vuông tại A, kẻ AH ⊥ BC. Chứng minh rằng BC + AH > AB + AC.
4. Cho △ABC không tù. Kẻ AH ⊥ BC, BK ⊥ AC. Biết AH ≥ BC, BK ≥ AC. Tính số đo các góc của △ABC
5. Cho △ABC cân tại A. Trên AB lấy D, trên tia đối của CA lấy E sao cho BD = CE. Chứng minh rằng BC < DE
Cho tam giác ABC, có AH vuông góc với BC tại H. Chứng minh rằng: a)AH<1/2(AB + AC); b) Kẻ BK vuông góc AC tại K, CL vuông góc với AB tại L. Chứng minh: AH + BK + CL < AB + BC + CA.
đang cần gấp
Cho tam giác ABC có AB < AC. Gọi H là hình chiếu của A trên đường thẳng BC. M là điểm bất kì trên đoạn AH. Tia BM cắt cạnh AC tại D. Chứng minh:
a) MB < MC
b) MD < HD