Cho các điểm M, N, P thứ tự thuộc các cạnh BC, CA, AB của tam giác ABC cân tại A sao cho tứ giác MNAP là hình bình hành. Gọi O là giao điểm của BN và CP. Chứng minh rằng góc ∠OMP = ∠AMN
Cho tam giác ABC cân tại đỉnh A , có đường cao AH. Gọi M là 1 điểm di động trên cạnh BC. Điểm D và E lần lượt thuộc cạnh AB và AC sao cho tứ giác ADME là hình bình hành. Gọi I là giao điểm của BE và CD.
a) Chứng minh rằng : \(\widehat{DMI}=\widehat{AME}\)
b) Chứng minh rằng đường thẳng MI luôn luôn đi qua 1 điểm cố định .
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ, em cám ơn nhiều lắm ạ!
Cho hình bình hành ABCD, có AB=2AD. Gọi N, M lần lượt là trung điểm của AB, CD. Gọi H là giao điểm của AM và DN, gọi I là giao điểm của BM và CN.
a) Chứng minh ANMD và BCMN là hình thoi.
b) Chứng minh CN và ND vuông góc với nhau.
c) Chứng minh tam giác AHD và tam giác CND đồng dạng.
d) Nối A với C cắt DN tại E và cắt MB tại F. Chứng minh AE=EF=FC.
MỌI NGƯỜI GIÚP MIK VỚI Ạ. MAI MIK PHẢI NỘP RỒI :((
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao AH (H thuộc BC). Gọi D là trung điểm của AB. Qua A kẻ đường thẳng vuông góc với CD cắt CD và CB lần lượt tại E và F. Gọi K là hình chiếu vuông góc của D trên BC.
1) Chứng minh rằng các tam giác ADE và CDA đồng dạng với nhau.
2) Chứng minh rằng BD.BC = BE.CD.
Bài 12: Cho tam giác ABC c n tại A và M là trung điểm của BC. ấy các điểm D,E
theo thứ t thuộc các cạnh AB, AC sao cho góc DME bằng góc B.
a) Chứng minh tam giác BDM đồng dạng với tam giác CME
b) Chứng minh tam giác BDM đồng dạng tam giác MDE
c) Chứng minh BM^2=BD.CE
Cho tam giác ABC một đường thẳng song song với cạnh BC cắt AB tại D và AC tại E. Trên tia đối của tia CA lấy điểm F sao cho CF=BD. Gọi M là giao điểm của DF và BC Chứng minh rằng: MD/MF = AC/AB. Cho BC=8cm, BD=5cm, DE=3cm . Chứng minh tam giác ABC cân
Mik đang cần gấp!!!
Bài 3: Cho tam giác ABC vuông tại A (AC>AB), M là điểm trên cạnh AC. Vẽ MD vuông góc với BC tại D. Gọi E là giao điểm của hai đường thẳng MD và AB. a) Chứng minh: ∆CDM∾∆CAB. b) Chứng minh: MD.ME=MA.MC c) Chứng minh: 𝑀𝐴𝐷 ̂ = 𝑀𝐸𝐶 ̂ d) giả sử 𝑆𝐴𝐵𝐷𝑀 = 3𝑆𝐶𝐷𝑀, chứng minh: BC=2MC
Bài 14: Cho △ABC có ba góc nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a) Chứng minh: Tứ giác BHCK là hình bình hành.