Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
GIÚP MIK VỚI :(((
Bài 14: Cho∆ABC có ba góc nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a) Chứng minh: Tứ giác BHCK là hình bình hành.
b) Chứng minh: BK ⊥AB và CK ⊥AC.
c) Gọi I là điểm đối xứng của H qua BC. CMR: Tứ giác BIKC là hình thang cân.
d) BK cắt HI tại G, Tam giác ABC có thêm điều kiện gì để tứ giác GHCK là hình thang cân.
Cho tam giác ABC nhọn ( AB < AC ) có hai đường cao BE, CF cắt nhau tại H.
Gọi D là giao điểm của AH và BC.
Chứng minh tam giác AEB đồng dạng tam giác AFC và AH. CD = HE. AC
Chứng minh DA là phân giác của góc EDF
Cho tam giác ABC nhọn (AB < AC) có hai đường cao AD và BE cắt nhau tại H. a) Chứng minh tam giác HEA đồng dạng tam giác HDB. b) Kẻ DK vuông góc AC tại K. Chứng minh CD2 = CK.CA c) Gọi N là trung điểm của CK. Trên tia đối của tia AD lấy điểm F sao cho AF = AD. Chứng minh FK vuông góc DN tại S.
Trl giúp t câu C với ạ
Cho ∆ABC vuông tại A (AB<AC) có đường cao AH
a) Chứng minh ∆HBA ∾ ∆ABC
b) Chứng minh AH2=HB.HC
c) Gọi E là điểm đối xứng với H qua điểm A, M là trung điểm của AH. Chứng minh: CM⊥BE tại K.
Trl giúp t câu C với ạ
Cho ∆ABC vuông tại A (AB<AC) có đường cao AH
a) Chứng minh ∆HBA ∾ ∆ABC
b) Chứng minh AH2=HB.HC
c) Gọi E là điểm đối xứng với H qua điểm A, M là trung điểm của AH. Chứng minh: CM⊥BE tại K.
Cho △ABC có 3 góc nhọn. Ba đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh △AEB đồng dạng △AFC
b) Chứng minh góc ABC = góc ABC
c) Kéo dài EF và BC cắt nhau tại \(I\) . Gọi M là trung điểm của BC. Chứng minh \(IE.IF=IM^2-\dfrac{BC^2}{4}\)
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao AH (H thuộc BC). Gọi D là trung điểm của AB. Qua A kẻ đường thẳng vuông góc với CD cắt CD và CB lần lượt tại E và F. Gọi K là hình chiếu vuông góc của D trên BC.
1) Chứng minh rằng các tam giác ADE và CDA đồng dạng với nhau.
2) Chứng minh rằng BD.BC = BE.CD.