\(TC:\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
\(KĐ:\) \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\cdot9=-27\\y=-3\cdot7=-21\\z=-3\cdot3=-9\end{matrix}\right.\)
\(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
AD TC DTSBN ta có
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
\(\Rightarrow\dfrac{x}{9}=-3\Rightarrow x=-27\)
\(\dfrac{y}{7}=-3\Rightarrow y=-21\)
\(\dfrac{z}{3}=-3\Rightarrow z=-9\)
Ta có: \(\dfrac{x}{y}=\dfrac{9}{7}\)
\(\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{7}\)(1)
Ta có: \(\dfrac{y}{z}=\dfrac{7}{3}\)
\(\Leftrightarrow\dfrac{y}{7}=\dfrac{z}{3}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
mà x-y+z=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{9}=-3\\\dfrac{y}{7}=-3\\\dfrac{z}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)
Vậy: (x,y,z)=(-27;-21;-9)